Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 286: 127829, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018940

RESUMO

The impact of climate warming on soil microbes has been well documented, with studies revealing its effects on diversity, community structure and network dynamics. However, the consistency of soil microbial community assembly, particularly in response to diverse plant root exudates under varying temperature conditions, remains an unresolved issue. To address this issue, we employed a growth chamber to integrate temperature and root exudates in a controlled experiment to examine the response of soil bacteria, fungi, and protists. Our findings revealed that temperature independently regulated microbial diversity, with distinct patterns observed among bacteria, fungi, and protists. Both root exudates and temperature significantly influenced microbial community composition, yet interpretations of these factors varied among prokaryotes and eukaryotes. In addition to phototrophic bacteria and protists, as well as protistan consumers, root exudates determined to varying degrees the enrichment of other microbial functional guilds at specific temperatures. The effects of temperature and root exudates on microbial co-occurrence patterns were interdependent; root exudates primarily simplified the network at low and high temperatures, while responses to temperature varied between single and mixed exudate treatments. Moreover, temperature altered the composition of keystone species within the microbial network, while root exudates led to a decrease in their number. These results emphasize the substantial impact of plant root exudates on soil microbial community responses to temperature, underscoring the necessity for future climate change research to incorporate additional environmental variables.


Assuntos
Bactérias , Fungos , Raízes de Plantas , Microbiologia do Solo , Temperatura , Raízes de Plantas/microbiologia , Fungos/classificação , Fungos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Microbiota , Mudança Climática , Eucariotos/crescimento & desenvolvimento , Biodiversidade , Exsudatos de Plantas/metabolismo , Exsudatos de Plantas/química , Solo/química
2.
Small ; 20(22): e2308851, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38112252

RESUMO

Vanadium oxides have aroused attention as cathode materials in aqueous zinc-ion batteries (AZIBs) due to their low cost and high safety. However, low ion diffusion and vanadium dissolution often lead to capacity decay and deteriorating stability during cycling. Herein, vanadium dioxides (VO2) nanobelts are coated with a single-atom cobalt dispersed N-doped carbon (Co-N-C) layer via a facile calcination strategy to form Co-N-C layer coated VO2 nanobelts (VO2@Co-N-C NBs) for cathodes in AZIBs. Various in-/ex situ characterizations demonstrate the interfaces between VO2 layers and Co-N-C layers can protect the VO2 NBs from collapsing, increase ion diffusion, and enhance the Zn2+ storage performance. Additional density functional theory (DFT) simulations demonstrate that Co─O─V bonds between VO2 and Co-N-C layers can enhance interfacial Zn2+ storage. Moreover, the VO2@Co-N-C NBs provided an ultrahigh capacity (418.7 mAh g-1 at 1 A g-1), outstanding long-term stability (over 8000 cycles at 20 A g-1), and superior rate performance.

3.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3279-3290, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38511367

RESUMO

The structural and functional characteristics of soil prokaryotic community are important for maintaining ecosystem functions. In this study, we examined the diversity and compositions, the key drivers, as well as functional characteristics of prokaryotic communities in the rhizosphere and non-rhizosphere soils of Picea asperata with different stand ages using high-throughput sequencing technique and bioinformatics methods. The results showed that ß-diversity of soil prokaryotic communities in both rhizosphere and non-rhizosphere showed significant differences among different stand ages, but no significant difference between rhizosphere and non-rhizosphere in the same stand age. In terms of community composition at the phylum level, the relative abundances of Proteobacteria and Rokubacteria showed an increasing trend with the increases of stand age, while the relative abundance of Actinobacteria showed a decreasing trend, but no significant difference was observed between 75 year-old planted forests (PF75) and natural forests (NF). The relative abundances of Firmicutes and Thaumarchaeota in the soil of the 25 year-old planted forests (PF25) were significantly higher than in other planted forests and NF. At the genus level, the relative abundances of RB41, Terrimonas and Acidibacter showed an increasing trend with the increases of stand age, and RB41 and Terrimonas in rhizosphere soil of PF75 were significantly higher than those in NF. Soil properties and vegetation characteristics jointly influenced the structure of soil prokaryotic communities, with herb layer coverage, soil pH, total phosphorus, and total nitrogen as major drivers. The functional characteristics of soil prokaryotic communities were significantly different among different stand ages. The relative abundances of functions involved in carbon and nitrogen cycle, e.g., cellulolysis and nitrification, decreased with the increases of stand age, whereas that of sulfate respiration involved in the sulfur cycle increased. We proposed that the structure and functional characteristics of soil prokaryotic communities could serve as important indicators of the development stages of P. asperata forests. In the later stages of plantation forest development, soil nutrient availability could be improved by mediating phosphorus-dissolving and nitrogen-enhancing microorganisms to maintain the stability of the plantation ecosystem.


Assuntos
Ecossistema , Picea , Solo/química , Florestas , Microbiologia do Solo , Nitrogênio , Fósforo
4.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1441-1451, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33899413

RESUMO

The diversity and interactions of soil fungal community are the key to maintain the diversity and stability of ecosystem. In this study, we examined the structure, diversity and co-occurrence networks of fungal community in rhizosphere and non-rhizosphere soils of planted and natural Picea asperata forests using high-throughput sequencing technique and bioinformatic methods. The results showed that Inocybaceae and Sebacinaceae were dominant family in soils of planted and natural forests, respectively. At the genus level, Inocybe was dominant one in soils of planted and natural forests. There were significant differences in ß-diversity of fungal communities between rhizosphere and non-rhizosphere soils in both planted and natural forests. There were no significant correlations between environmental variables and the relative abundance and α-diversity of fungal communities. Herb layer coverage, soil water content, total organic carbon concentration, and plant species richness played important roles in explaining the variations of ß-diversity of fungal communities. Results of the network analysis showed that the negative correlations were dominant among soil fungal communities in natural forest, suggesting that the competition of different groups in natural forest. Moreover, there were more negative correlations in non-rhizosphere soils than in rhizosphere soils, which indicated that fungal communities in non-rhizosphere soils comprised more competitive network structure than in the rhizosphere soils. Biomarker species were identified based on differential abundance analysis. Sebacinaceae was the single shared keystone species in the fungal network which had significant differences among rhizosphere and non-rhizosphere soils of planted and natural forests. Therefore, it is suggested that the variation of differential species in the soil fungal communities between the planted and natural forest might had limited influence on the stability of the community of planted and natural forests.


Assuntos
Micobioma , Picea , Ecossistema , Florestas , Fungos/genética , Rizosfera , Solo , Microbiologia do Solo
5.
Ying Yong Sheng Tai Xue Bao ; 30(11): 3681-3688, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31833680

RESUMO

To understand the effects of climate warming on rhizosphere ecological processes in the alpine scrub ecosystem, the responses of polyphenoloxidase and catalase activities in the rhizosphere and bulk soils to experimental warming (1.3 ℃) were examined during the growing season in a Sibiraea angustata scrub ecosystem on the eastern Qinghai-Tibetan Plateau, China. The results showed that the activities of polyphenoloxidase in rhizosphere and bulk soils in the middle growing season were significantly higher than those in the early or late growing season. The activities of catalase in the bulk soil increased gradually during the growing season, while they showed no seasonal changes in the rhizosphere soil. In the bulk soil, warming significantly increased the activity of polyphenoloxidase by 17.5% in the late growing season and increased that of catalase by 2.2% in the middle growing season, whereas it did not affect soil enzyme activities in early or late growing seasons. In the rhizosphere soil, warming only significantly increased the activities of polyphenoloxidase and catalase by 6.5% and 1.3% in the early growing season. The rhizosphere effect of soil polyphenoloxidase activity was positive throughout the growing season, while there was no obvious rhizosphere effect for soil catalase activity. Furthermore, warming significantly decreased the rhizosphere effect of soil polyphenoloxidase activity by 15.2% during the late growing season. These results indicated that the activities of polyphenoloxidase and catalase activities differed between rhizosphere and bulk soils, with consequences on the rhizosphere soil ecological processes under climate warming in the alpine scrub ecosystem on the eastern Qinghai-Tibetan Plateau.


Assuntos
Ecossistema , Solo , Catalase , Catecol Oxidase , China , Rizosfera , Estações do Ano , Tibet
6.
Ying Yong Sheng Tai Xue Bao ; 30(6): 1893-1900, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31257761

RESUMO

To understand the effects of climate warming on the rhizosphere ecological process in the alpine scrub ecosystem, the responses of microbial biomass carbon and nitrogen in the rhizosphere and bulk soil to experimental warming were examined in a Sibiraea angustata scrubland on the eas-tern Qinghai-Tibetan Plateau, China. The results showed that the concentrations of microbial biomass carbon and nitrogen in the rhizosphere and bulk soil in the early growing season were significantly higher than those in the middle and late growing seasons. Experimental warming did not significantly affect the concentrations of microbial biomass carbon and nitrogen of the rhizosphere soil in the most growing seasons. In the bulk soil, however, the effects of experimental warming on the microbial biomass carbon and nitrogen differed among the growing season. Experimental warming significantly decreased microbial biomass carbon but increased microbial biomass nitrogen in the early growing season. In the middle growing season, warming significantly increased both microbial biomass carbon and nitrogen. In the late growing season, there was no significant effect. The rhizosphere effects of soil microbial biomass carbon and nitrogen also differed with the growing season. The rhizosphere effects of microbial biomass carbon and nitrogen were negative in the early growing season but positive in the middle growing season. In the late growing season, there were negative rhizosphere effects of soil microbial biomass carbon and positive rhizosphere effects of soil microbial biomass nitrogen. Furthermore, experimental warming significantly increased the rhizosphere effects of soil microbial biomass carbon and nitrogen in the early growing season, but decreased those in the middle and late growing seasons. These results uncovered the changing mechanism of the biologi-cal process in the rhizosphere and bulk soil in the alpine scrub ecosystems under the background of climate warming.


Assuntos
Ecossistema , Nitrogênio , Solo , Biomassa , Carbono , China , Aquecimento Global , Rizosfera , Microbiologia do Solo
7.
Ying Yong Sheng Tai Xue Bao ; 29(10): 3477-3486, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30325175

RESUMO

Global carbon cycle is being profoundly altered by climate change. As an important component of the global carbon cycle, soil respiration is tightly linked to the carbon transfer among plants-soil-microbes. Soil respiration can be divided into the heterotrophic respiration and root-derived respiration (i.e., actual root respiration and rhizomicrobial respiration). Responses of soil respiration to climate warming may be different, since its components differ in occurrence sites and sources of soil organic carbon. However, the current literatures can not fully clarify the precise partition and quantification of soil respiration components. The influences of climate warming on soil respiration and related mechanisms are still unclear, which greatly limits our understanding of the accurate assessments of soil carbon cycle as well as the changes in the carbon balance of terrestrial ecosystems under climate change. We systematically summarized the progress of partitioning techniques of soil respiration components, and compared the results of partitioning of soil respiration components using different techniques. We further discussed the progress on the responses of soil respiration components to climate warming. To exactly distinguish and quantify soil respiration components, we proposed that the present techniques should be modified. Furthermore, future studies should focus on how to accurately partitioning root-derived respiration in the field for comprehensively understand soil carbon cycle and the changes of carbon budget in terrestrial ecosystems under global change. Moreover, more attention should be paid on the responses of soil respiration components to various environmental factors.


Assuntos
Solo , Carbono , Ciclo do Carbono , Ecossistema , Aquecimento Global , Processos Heterotróficos , Plantas
8.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2211-2216, 2018 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-30039658

RESUMO

To understand the effects of climate warming and vegetation disturbance on soil ecological process during different stages of growing season in the alpine scrub ecosystem, the responses of soil invertase and urease activities to warming (0.6-1.3 ℃) and plant removal were investigated in a Sibiraea angustata scrubland on the eastern Qinghai-Tibetan Plateau, China. The results showed that experimental warming significantly increased soil invertase activity by 3.7%-13.3% in the removal- and unremoval-plant plots throughout the entire growing season. Warming significantly increased soil urease activity by 10.8%-56.3% in the removal- and unremoval-plant plots, except the late growing stage, during which warming had no significant effect on soil urease activity in the unremoval-plant plots. The effects of plant removal treatments on soil invertase and urease activities varied with warming and growing stages. Plant removal significantly decreased soil invertase activity of the warmed plots during the entire growing season and the unwarmed plots during the early and late growing stages, but did not affect soil invertase activity in the unwarmed plots during the mid-growing stage. Plant removal only significantly decreased soil urease activity by 10.5% in the unwarmed plots during the late growing stage. However, in the warmed plots, plant removal significantly decreased soil urease activity by 16.0%-18.7% during the early and mid growing stages. The results would increase our understanding of soil carbon and nitrogen cycling process in the alpine scrub ecosystems.


Assuntos
Ecossistema , Solo/química , Urease/metabolismo , beta-Frutofuranosidase/metabolismo , Altitude , China , Estações do Ano , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA