Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Acta Pharmacol Sin ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117969

RESUMO

Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%-20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10-30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.

2.
Parasitol Int ; 103: 102933, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39048024

RESUMO

Tick saliva contains a range of critical biological molecules which could inhibit host defenses and guarantee their food supply. Hq023, a novel cDNA sequence, was cloned from a cDNA library constructed from salivary glands of partially-engorged Haemaphysalis qinghaiensis. Hq023 has an open reading frame (ORF) of 408 bp coding a protein containing 135 amino acid residues with a molecular mass of 15 kDa. Database homology showed that Hq023 protein was structurally similar to a natural toxin U33-theraphotoxin-Cg1c from the Chinese tarantula Chilobrachys guangxiensis. A recombinant protein was expressed with the novel cDNA in a prokaryotic system and its analgesic effect was evaluated in mice model. Both tail immersion and hot-plate tests uncovered an antinociceptive activity, while in the acetic acid-induced writhing test this effect was not observed. These results indicated that the novel recombinant protein Hq023 (rHq023) probably possessed a central antinociceptive activity. Finding of the novel protein might pave a new avenue for the development of tick-derived analgesics.

3.
Dermatol Ther (Heidelb) ; 14(6): 1671-1682, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824483

RESUMO

INTRODUCTION: Recent advancements in androgenetic alopecia (AGA) treatment have highlighted the efficacy of botulinum toxin (BoNT). However, inconsistencies in injection sites and depths warrant attention. It remains unclear which injection strategy is most beneficial for patients. METHODS: This split-scalp randomized controlled trial divided each enrolled participant's scalp along the midline: one side was randomized to receive intramuscular BoNT injections in the surrounding muscles, while the other side received intradermal BoNT injections directly into the balding areas. This study evaluated the impact of treatment on hair density and diameter through trichoscopic examinations conducted at baseline and 12 weeks post treatment. Additionally, assessments of pain and overall safety were integrated into the study protocol. RESULTS: Twenty-nine patients completed the study, with significant improvements in hair density observed in the intramuscular injection group compared to the intradermal group (p < 0.001). Both groups exhibited increases in hair diameter, but no significant difference was found between the two methods (p = 0.433). Pain evaluation revealed that intradermal injections in balding areas were more painful than intramuscular injections (p = 0.036), with no severe adverse reactions reported except for a single case of alopecia areata following injection. CONCLUSION: Our research revealed that both BoNT injection strategies enhanced hair diameter 12 weeks post-treatment, with intramuscular injections significantly improving hair density more effectively. Despite the promising outcomes, the variability in patient responses underscores the necessity for personalized approaches and further research to refine injection protocols for optimized efficacy and safety. TRIAL REGISTRATION NUMBER: ChiCTR2400080190.

4.
Exp Cell Res ; 440(2): 114114, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823472

RESUMO

Hypertrophic scar (HS) is a fibroproliferative skin disease characterized by abnormal wound healing and pathological excessive fibrosis of the skin. Currently, the molecular mechanism of the disease is still largely unknown, and there is no effective drug treatment. In this study, we explored the effect of Rynchopeterine on the formation of HS. HS fibroblasts (HSFs) were isolated from the HS tissues of patients recovering from severe burns. After treating HSFs with different concentrations of Rynchopeterine, CCK-8, EdU, and Annexin V-FITC/PI assays were used to detect the proliferation, apoptosis, and contractile ability of HSFs. RT-qPCR and Western blotting were performed to evaluate the effect of Rynchopeterine on the expression of miR-21 and hypoxia-inducible factor 1-alpha subunit suppressor (HIF1AN). The dual-luciferase reporter gene was used to verify the targeting relationship between miR-21 and HIF1AN. Rynchopeterine reduced the expression of Col1a2, Col3a1, and α-SMA, inhibited proliferation and contraction of HSFs, and increased apoptosis in a dose-dependent manner. miR-21 was highly expressed in HS tissues and HSFs, and Rynchopeterine could inhibit miR-21 expression. Overexpression of miR-21 and knockdown of HIF1AN increased proliferation, activation, contraction, and collagen synthesis of HSFs, and inhibited their apoptosis. In vivo, Rynchopeterine could reduce the collagen content of the dermis and the positive ratio of PCNA and α-SMA. Rynchopeterine is a good therapeutic agent for HS, which up-regulates the expression of HIF1AN by inhibiting miR-21, thereby inhibiting the formation of HS.


Assuntos
Apoptose , Proliferação de Células , Cicatriz Hipertrófica , Fibroblastos , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/tratamento farmacológico , Cicatriz Hipertrófica/patologia , Cicatriz Hipertrófica/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Camundongos , Masculino , Células Cultivadas , Feminino , Cicatrização/efeitos dos fármacos , Oxigenases de Função Mista , Proteínas Repressoras
5.
Front Microbiol ; 15: 1377001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863753

RESUMO

The Pollution Nagasaki (PN) section of the East China Sea (ECS) is a typical area for studying the complex hydrographic dynamics between Changjiang River discharge and Kuroshio, displaying intense variations of environmental gradients from nearshore to offshore. However, the temporal and spatial changes of microbial communities along the PN section have long been overlooked. In this study, we performed a comprehensive investigation into the abundance, diversity and ecology of free-living (FL) and particle-associated (PA) microbial communities in seawater samples along the PN section during both summer and winter. Distinct hydrological conditions and resulting environmental gradients were observed between summer and winter, with clear features of intrusive Kuroshio subsurface water in summer and strong vertical mixing of seawater in winter. Bacterial abundance along the PN section was higher in summer (1.11 × 108 copies·L-1 - 7.37 × 108 copies·L-1) than in winter (1.83 × 106 copies·L-1 - 1.34 × 108 copies·L-1). Microbial diversity, as indicated by α-diversity indices, remained at relatively stable levels in summer, while a clear decreasing trend was observed in winter along the PN section. Additionally, the winter communities exhibited a more evident spatial shift along the PN section compared to the summer communities. 16S rRNA gene amplicon sequencing showed that microbial community composition varied considerably between different seasons (summer and winter) and lifestyles (FL and PA), with a notable dominance of Ralstonia species. in winter. Regarding the assembly of microbial communities, the stochastic process represented by dispersal limitation was the dominant process in summer, while the deterministic homogeneous selection was the most important process in winter. Correspondingly, distinct topological properties of the microbial co-occurrence networks were shown between different seasons and along the PN section. These results enhance our understanding of how hydrological conditions influence dynamic changes of microbial communities along the PN section, providing new insights for the microbial community assembly and interactions in such a complex environment.

6.
Biomed Pharmacother ; 176: 116798, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795642

RESUMO

Cancer is one of the most lethal diseases all over the world. Despite that many drugs have been developed for cancer therapy, they still suffer from various limitations including poor treating efficacy, toxicity to normal human cells, and the emergence of multidrug resistance. In this study, the amphiphilic LHES polymers were prepared using hydroxyethyl starch (HES) and linoleic acid as starting materials. The content and substitution degree of linoleic acid groups in LHES polymers were analyzed. The LHES polymers were used for fabricating LHES-B nanoparticles carrying a linoleic acid modified berberine derivative (L-BBR). The LHES-B nanoparticles showed high drug loading efficiency (29%) and could quickly release L-BBR under acidic pH condition (pH = 4.5). Biological investigations revealed that LHES-B nanoparticles significantly inhibited the proliferation of HepG2 cells and exhibited higher cytotoxicity than L-BBR. In a transgenic Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasv12) zebrafish model, LHES-B nanoparticles obviously inhibited the expression of krasv12 oncogene. These results indicated that LHES carriers could improve the anticancer activity of L-BBR, and the synthesized LHES-B nanoparticles showed great potential as anticancer drug.


Assuntos
Berberina , Derivados de Hidroxietil Amido , Ácido Linoleico , Nanopartículas , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Antineoplásicos/química , Berberina/farmacologia , Berberina/química , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células Hep G2 , Derivados de Hidroxietil Amido/farmacologia , Derivados de Hidroxietil Amido/química , Ácido Linoleico/química , Nanopartículas/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Peixe-Zebra , Modelos Animais de Doenças
7.
Eur J Ophthalmol ; : 11206721241247585, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653578

RESUMO

BACKGROUND: Diabetic retinopathy (DR) frequently results in compromised visual function, with hyperglycemia-induced disruption of the blood-retinal barrier (BRB) through various pathways as a critical mechanism. Existing DR treatments fail to address early and potentially reversible microvascular alterations. This study examined the effects of empagliflozin (EMPA), a selective Sodium-glucose transporter 2 (SGLT2) inhibitor, on the retina of db/db mice. The objective of this study is to investigate the potential role of EMPA in the prevention and delay of DR. METHODS: db/db mice were randomly assigned to either the EMPA treatment group (db/db + Emp) or the model group (db/db), while C57 mice served as the normal control group (C57). Mice in the db/db + Emp group received EMPA for eight weeks. Body weight, fasting blood glucose (FBG), and blood VEGF were subsequently measured in all mice, along with the detection of specific inflammatory factors and BRB proteins in the retina. Retinal SGLT2 protein expression was compared using immunohistochemical analysis, and BRB structural changes were observed via electron microscopy. RESULTS: EMPA reduced FBG, blood VEGF, and retinal inflammatory factors TNF-α, IL-6, and VEGF levels in the eye tissues of db/db mice. EMPA also increased Claudin-1, Occludin-1, and ZO-1 levels while decreasing ICAM-1 and Fibronectin, thereby preserving BRB function in db/db mice. Immunohistochemistry revealed that EMPA reduced SGLT2 expression in the retina of diabetic mice, and electron microscopy demonstrated that EMPA diminished tight junction damage between retinal vascular endothelial cells and prevented retinal vascular basement membrane thickening in diabetic mice. CONCLUSION: EMPA mitigates inflammation and preserves BRB structure and function, suggesting that it may prevent DR or serve as an effective early treatment for DR.

8.
Medicine (Baltimore) ; 103(17): e37888, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669420

RESUMO

RATIONALE: This article presents a complex case of refractory severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related inflammatory bowel disease (IBD) and outlines its diagnostic and therapeutic challenges. Considering inadequate responses to conventional and steroid treatments, the potential efficacy of intravenous immunoglobulin is explored. PATIENT CONCERNS: The patient, an elderly individual, experienced short-term fever and sore throat after encountering the coronavirus disease 2019 pandemic. Despite receiving a 3-dose inactivated SARS-CoV-2 vaccine, the patient tested positive for the viral antigen and developed worsening symptoms, including diarrhea and recurrent fever. Initial antibiotic treatment for bacterial enteritis proved ineffective. DIAGNOSES: Further evaluation, including endoscopy and pathology, confirmed the diagnosis of IBD with concurrent multisystem inflammatory syndrome (MIS) in adults, as evidenced by tachycardia and elevated inflammatory markers. INTERVENTIONS: Following unsuccessful treatment with mesalazine, probiotics, corticosteroids, and supportive care, the patient underwent lower-dose intravenous immunoglobulin therapy. OUTCOMES: The patient experienced symptom improvement, with resolution of fever, diarrhea, and inflammation. At the 30-day follow-up, the patient remained afebrile, without diarrhea, and exhibited favorable mental status. LESSONS: Elderly individuals infected with SARS-CoV-2 may develop severe systemic inflammatory responses. The patients in this report predominantly presented with IBD following SARS-CoV-2 infection, accompanied by MIS. Favorable clinical outcomes were achieved following lower-dose intravenous immunoglobulin immunotherapy, which demonstrated superior efficacy compared to glucocorticoids in managing such conditions. Future research should prioritize investigating immunotherapy application strategies in IBD and MIS. Notably, the significant clinical improvement observed with lower-dose intravenous immunoglobulin administration could optimize the utilization of this limited medical resource.


Assuntos
COVID-19 , Imunoglobulinas Intravenosas , Doenças Inflamatórias Intestinais , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Humanos , Masculino , COVID-19/complicações , Imunoglobulinas Intravenosas/uso terapêutico , Imunoglobulinas Intravenosas/administração & dosagem , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/terapia , Idoso de 80 Anos ou mais
9.
Biomedicines ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38672132

RESUMO

Antibody-based bispecific T cell engagers (TCEs) that redirect T cells to kill tumor cells have shown a promising therapeutic effect on hematologic malignancies. However, tumor-specific targeting is still a challenge for TCEs, impeding the development of TCEs for solid tumor therapy. The major histocompatibility complex (MHC) presents almost all intracellular peptides (including tumor-specific peptides) on the cell surface to be scanned by the TCR on T cells. With the premise of choosing optimal peptides, the final complex peptide-MHC could be the tumor-specific target for TCEs. Here, a novel TCR-directed format of a TCE targeting peptide-MHC was designed named IgG-T-TCE, which was modified from the IgG backbone and prepared in a mammalian cell expression system. The recombinant IgG-T-TCE-NY targeting NY-ESO-1157-165/HLA-A*02:01 could be generated in HEK293 cells with a glycosylated TCR and showed potency in T cell activation and redirecting T cells to specifically kill target tumor cells. We also found that the in vitro activity of IgG-T-TCE-NY could be leveraged by various anti-CD3 antibodies and Fc silencing. The IgG-T-TCE-NY efficiently inhibited tumor growth in a tumor-PBMC co-engrafted mouse model without any obvious toxicities.

10.
Phys Rev Lett ; 132(7): 072301, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427896

RESUMO

This work presents the first Bayesian inference study of the (3+1)D dynamics of relativistic heavy-ion collisions and quark-gluon plasma viscosities using an event-by-event (3+1)D hydrodynamics+hadronic transport theoretical framework and data from the Relativistic Heavy Ion Collider Beam energy scan program. Robust constraints on initial state nuclear stopping and the baryon chemical potential-dependent shear viscosity of the produced quantum chromodynamic (QCD) matter are obtained. The specific bulk viscosity of the QCD matter is found to exhibit a preferred maximum around sqrt[s_{NN}]=19.6 GeV. This result allows for the alternative interpretation of a reduction (and/or increase) of the speed of sound relative to that of the employed lattice-QCD based equation of state for net baryon chemical potential µ_{B}∼0.2(0.4) GeV.

11.
Vaccine X ; 16: 100444, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38327768

RESUMO

Although the global pandemic of SARS-CoV-2 has passed, there are still regional outbreaks that continue to jeopardize human health. Hence, there is still a great deal of interest in developing an efficient vaccine that can quickly and effectively prevent reemerging outbreaks of SARS-CoV-2. Delta variant was once a dominant strain in the world in 2021, and we first constructed a recombinant RBDdelta-Fc fusion vaccine by coupling the RBD of Delta variant with the human Fc fragment. This Fc fusion strategy increases the immunogenicity of the recombinant RBD vaccine, with a long-lasting high level of IgG antibodies and neutralizing antibodies induced by RBDdelta-Fc vaccine. This RBDdelta-Fc vaccine, as well as the RBD-Fc vaccine prepared in our previously study, could trigger a durable immune effect by the heterologous boosting immunity, and the RBD-Fc induced a quicker humoral immune response than the homologous immunization with inactivated vaccines. In conclusion, the Fc fusion strategy has a significant role in enhancing the immunogenicity of recombinant protein vaccines, thus promising the development of a safe and efficient vaccine for the heterologous boosting against SARS-CoV-2.

12.
Sci Adv ; 10(8): eadj6251, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394207

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy is a promising and precise targeted therapy for cancer that has demonstrated notable potential in clinical applications. However, severe adverse effects limit the clinical application of this therapy and are mainly caused by uncontrollable activation of CAR-T cells, including excessive immune response activation due to unregulated CAR-T cell action time, as well as toxicity resulting from improper spatial localization. Therefore, to enhance controllability and safety, a control module for CAR-T cells is proposed. Synthetic biology based on genetic engineering techniques is being used to construct artificial cells or organisms for specific purposes. This approach has been explored in recent years as a means of achieving controllability in CAR-T cell therapy. In this review, we summarize the recent advances in synthetic biology methods used to address the major adverse effects of CAR-T cell therapy in both the temporal and spatial dimensions.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Neoplasias/genética , Neoplasias/terapia , Terapia Baseada em Transplante de Células e Tecidos
13.
Microorganisms ; 12(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38258013

RESUMO

The South China Sea (SCS) is abundant in marine microbial resources with high primary productivity, which is crucial for sustaining the coral reef ecosystem and the carbon cycle. Currently, research on the diversity of culturable bacteria in the SCS is relatively extensive, yet the culturable bacteria in coral reefs has been poorly understood. In this study, we analyzed the bacterial community structure of seawater samples among Daya Bay (Fujian Province), Qionghai (Hainan Province), Xisha Islands, and the southern South China Sea based on culturable methods and detected their abilities for agar degradation. There were 441 bacterial strains, belonging to three phyla, five classes, 43 genera, and 101 species, which were isolated by marine agar 2216E (MA; Becton Dickinson). Strains within Gammaproteobacteria were the dominant group, accounting for 89.6% of the total bacterial isolates. To investigate vibrios, which usually correlated with coral health, 348 isolates were obtained from TCBS agar, and all isolates were identified into three phylum, three classes, 14 orders, 25 families, and 48 genera. Strains belonging to the genus Vibrio had the greatest number (294 strains), indicating the high selectivity of TCBS agar for vibrios. Furthermore, nineteen strains were identified as potentially novel species according to the low 16S rRNA gene similarity (<98.65%), and 28 strains (15 species) had agar-degrading ability. These results indicate a high diversity of culturable bacteria in the SCS and a huge possibility to find novel and agar-degrading species. Our study provides valuable microbial resources to maintain the stability of coral ecosystems and investigate their roles in the marine carbon cycle.

14.
ACS Appl Mater Interfaces ; 16(6): 6756-6771, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291577

RESUMO

Healing traumatic wounds is arduous, leaving miscellaneous demands for ideal wound dressings, such as rapid hemostasis, superior wet tissue adhesion, strong mechanical properties, and excellent antibacterial activity. Herein, we report a self-gelling, wet adhesive, stretchable (polyethylenimine/poly(dimethylammonium chloride)/(poly(acrylic acid)/poly(sodium styrenesulfonate)/alkylated chitosan)) ((PEI/PDDA)/(PAA/PSS)/ACS) powder as a new option. The self-gel utilizes noncovalent interactions among in situ formed PDDA/PSS nanoparticles and PEI/PAA polymetric matrices to earn sensational mechanical properties and tensile strength while incorporating ACS to obtain fast hemostasis and therapeutic capacities. The powder can form a hydrogel patch in situ within 3 s upon liquid absorption, capable of resisting pressure higher than twice the blood pressure. Deposition of the self-gelling powders on various wounds, such as rat liver and femoral artery wounds, can stop bleeding in 10 s and lessen the amount of bleeding 6-fold plus in corresponding models. Furthermore, the self-gelling powders can significantly advance the chronic wound healing process by displaying a high wound healing rate and a low inflammatory response and promoting the formation of new blood vessels and tissue regeneration. The satisfactory mechanical properties, strong wet adhesion, sufficient antibacterial properties, ease of usage, adaptability to complex wounds, rapid hemostasis, and superior therapeutic capacities of (PEI/PDDA)/(PAA/PSS)/ACS self-gelling powders render them as a profound wound dressing biomaterial.


Assuntos
Adesivos , Cicatrização , Ratos , Animais , Adesivos/farmacologia , Pós/farmacologia , Hemostasia , Hidrogéis/farmacologia , Aderências Teciduais , Antibacterianos/farmacologia
15.
Adv Sci (Weinh) ; 11(13): e2306309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38269648

RESUMO

Bystander-killing payloads can significantly overcome the tumor heterogeneity issue and enhance the clinical potential of antibody-drug conjugates (ADC), but the rational design and identification of effective bystander warheads constrain the broader implementation of this strategy. Here, graph attention networks (GAT) are constructed for a rational bystander killing scoring model and ADC construction workflow for the first time. To generate efficient bystander-killing payloads, this model is utilized for score-directed exatecan derivatives design. Among them, Ed9, the most potent payload with satisfactory permeability and bioactivity, is further used to construct ADC. Through linker optimization and conjugation, novel ADCs are constructed that perform excellent anti-tumor efficacy and bystander-killing effect in vivo and in vitro. The optimal conjugate T-VEd9 exhibited therapeutic efficacy superior to DS-8201 against heterogeneous tumors. These results demonstrate that the effective scoring approach can pave the way for the discovery of novel ADC with promising bystander payloads to combat tumor heterogeneity.


Assuntos
Imunoconjugados , Linhagem Celular Tumoral , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico
16.
J Antimicrob Chemother ; 79(1): 61-65, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37965874

RESUMO

OBJECTIVES: To investigate the genetic context and transferability of the oxazolidinone resistance gene optrA in a Streptococcus parasuis isolate. METHODS: The optrA-carrying S. parasuis isolate SFJ45 was characterized by PCR, antimicrobial susceptibility testing, complete genome sequencing and bioinformatic analysis. The transferability of optrA was verified by conjugation, followed by SmaI-PFGE and Southern blotting. RESULTS: The S. parasuis isolate SFJ45 was positive for optrA, mef(A), msr(D), erm(B), tetAB(P)', tet(M), aadE, aphA3, catQ, dfrG and mdt(A), conferring an MDR phenotype. The optrA gene was flanked by ISS1N at both termini in the same orientation, representing a novel 8750 bp pseudo-compound transposon, organized as the ISS1N-hth-clb-4hp-optrA-2hp-ISS1N structure. The ISS1N-optrA-carrying transposon was further inserted within an integrative and conjugative element, ICESpsuSFJ45, at 3' end of the fda gene. Conjugative transfer of the ISS1N-optrA-carrying transposon with ICESpsuSFJ45 was observed from S. parasuis to Streptococcus suis at a frequency of (1.01 ± 3.12) × 10-7. CONCLUSIONS: ISS1N was found to be associated with optrA spreading for the first time. Integration of the ISS1N-optrA transposon within ICESpsuSFJ45 may lead to the co-selection of optrA with other antimicrobial resistance genes, contributing to its horizontal transfer from S. parasuis to clinically more important bacterial pathogens.


Assuntos
Anti-Infecciosos , Streptococcus suis , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
17.
Mol Ther ; 32(2): 490-502, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38098228

RESUMO

Inadequate T cell activation has severely limited the success of T cell engager (TCE) therapy, especially in solid tumors. Enhancing T cell activity while maintaining the tumor specificity of TCEs is the key to improving their clinical efficacy. However, currently, there needs to be more effective strategies in clinical practice. Here, we design novel superantigen-fused TCEs that display robust tumor antigen-mediated T cell activation effects. These innovative drugs are not only armed with the powerful T cell activation ability of superantigens but also retain the dependence of TCEs on tumor antigens, realizing the ingenious combination of the advantages of two existing drugs. Superantigen-fused TCEs have been preliminarily proven to have good (>30-fold more potent) and specific (>25-fold more potent) antitumor activity in vitro and in vivo. Surprisingly, they can also induce the activation of T cell chemotaxis signals, which may promote T cell infiltration and further provide an additional guarantee for improving TCE efficacy in solid tumors. Overall, this proof-of-concept provides a potential strategy for improving the clinical efficacy of TCEs.


Assuntos
Neoplasias , Linfócitos T , Humanos , Superantígenos/uso terapêutico , Antígenos de Neoplasias , Morte Celular
18.
Comput Struct Biotechnol J ; 21: 5839-5850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074472

RESUMO

Generative adversarial networks (GANs) have successfully generated functional protein sequences. However, traditional GANs often suffer from inherent randomness, resulting in a lower probability of obtaining desirable sequences. Due to the high cost of wet-lab experiments, the main goal of computer-aided antibody optimization is to identify high-quality candidate antibodies from a large range of possibilities, yet improving the ability of GANs to generate these desired antibodies is a challenge. In this study, we propose and evaluate a new GAN called the Language Model Guided Antibody Generative Adversarial Network (AbGAN-LMG). This GAN uses a language model as an input, harnessing such models' powerful representational capabilities to improve the GAN's generation of high-quality antibodies. We conducted a comprehensive evaluation of the antibody libraries and sequences generated by AbGAN-LMG for COVID-19 (SARS-CoV-2) and Middle East Respiratory Syndrome (MERS-CoV). Results indicate that AbGAN-LMG has learned the fundamental characteristics of antibodies and that it improved the diversity of the generated libraries. Additionally, when generating sequences using AZD-8895 as the target antibody for optimization, over 50% of the generated sequences exhibited better developability than AZD-8895 itself. Through molecular docking, we identified 70 antibodies that demonstrated higher affinity for the wild-type receptor-binding domain (RBD) of SARS-CoV-2 compared to AZD-8895. In conclusion, AbGAN-LMG demonstrates that language models used in conjunction with GANs can enable the generation of higher-quality libraries and candidate sequences, thereby improving the efficiency of antibody optimization. AbGAN-LMG is available at http://39.102.71.224:88/.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38091076

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Vitamin E (VE) has antioxidant properties and can mediate lipid metabolism. Non-targeted metabolomics technology was employed to uncover comprehensively the metabolome of VE in NAFLD rats. NAFLD model was created with a high-fat and high-cholesterol diet (HFD) in rats. NAFLD rats in the VE group were given 75 mg/(kg day) VE. The metabolites in the serum of rats were identified via UPLC and Q-TOF/MS analysis. KEGG was applied for the pathway enrichment. VE improved the liver function, lipid metabolism, and oxidative stress in NAFLD rats induced by HFD. Based on the metabolite profile data, 132 differential metabolites were identified between VE group and the HFD group, mainly including pyridoxamine, betaine, and bretylium. According to the KEGG results, biosynthesis of cofactors was a key metabolic pathway of VE in NAFLD rats. VE can alleviate NAFLD induced by HFD, and the underlying mechanism is associated with the biosynthesis of cofactors, mainly including pyridoxine and betaine.

20.
Front Microbiol ; 14: 1285670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928659

RESUMO

Members of the family Vibrionaceae (vibrios) are widely distributed in estuarine, offshore, and marginal seas and perform an important ecological role in the marine organic carbon cycle. Nevertheless, there is little knowledge about whether vibrios play ecological roles in the oligotrophic pelagic area, which occupies a larger water volume. In this study, we investigated the abundance, diversity, and composition of free-living and particle-associated vibrios and their relationships with environmental factors along the water depth in the eastern tropical Indian Ocean (ETIO). The abundance of vibrios in free-living fractions was significantly higher than that of particle-associated fractions on the surface. Still, both were similar at the bottom, indicating that vibrios may shift from free-living lifestyles on the surface to mixed lifestyles at the bottom. Vibrio-specific 16S rRNA gene amplicon sequencing revealed that Paraphotobacterium marinum and Vibrio rotiferianus were dominant species in the water column, and Vibrio parahaemolyticus (a clinically important pathogen) was recorded in 102 samples of 111 seawater samples in 10 sites, which showed significant difference from the marginal seas. The community composition also shifted, corresponding to different depths in the water column. Paraphotobacterium marinum decreased with depth, and V. rotiferianus OTU1528 was mainly distributed in deeper water, which significantly correlated with the alteration of environmental factors (e.g., temperature, salinity, and dissolved oxygen). In addition to temperature and salinity, dissolved oxygen (DO) was an important factor that affected the composition and abundance of Vibrio communities in the ETIO. Our study revealed the vertical dynamics and preferential lifestyles of vibrios in the ETIO, helping to fill a knowledge gap on their ecological distribution in oligotrophic pelagic areas and fully understanding the response of vibrios in a global warming environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA