Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(32): e202305281, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37279438

RESUMO

Single-crystal LiNix Coy Mnz O2 (SC-NCM, x+y+z=1) cathodes are renowned for their high structural stability and reduced accumulation of adverse side products during long-term cycling. While advances have been made using SC-NCM cathode materials, careful studies of cathode degradation mechanisms are scarce. Herein, we employed quasi single-crystalline LiNi0.65 Co0.15 Mn0.20 O2 (SC-NCM65) to test the relationship between cycling performance and material degradation for different charge cutoff potentials. The Li/SC-NCM65 cells showed >77 % capacity retention below 4.6 V vs. Li+ /Li after 400 cycles and revealed a significant decay to 56 % for 4.7 V cutoff. We demonstrate that the SC-NCM65 degradation is due to accumulation of rock-salt (NiO) species at the particle surface rather than intragranular cracking or side reactions with the electrolyte. The NiO-type layer formation is also responsible for the strongly increased impedance and transition-metal dissolution. Notably, the capacity loss is found to have a linear relationship with the thickness of the rock-salt surface layer. Density functional theory and COMSOL Multiphysics modeling analysis further indicate that the charge-transfer kinetics is decisive, as the lower lithium diffusivity of the NiO phase hinders charge transport from the surface to the bulk.

2.
ACS Appl Mater Interfaces ; 15(16): 20075-20080, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040335

RESUMO

Nickel-rich LiNi1-x-yMnxCoyO2 (NMC, 1 - x - y ≥ 0.8) is currently considered one of the most promising cathode materials for high-energy-density automotive lithium-ion batteries. Here, we show that capacity losses occurring in balanced NMC811||graphite cells can be mitigated by lithicone layers grown by molecular layer deposition directly onto porous NMC811 particle electrodes. Lithicone layers with a stoichiometry of LiOC0.5H0.3 as determined by elastic recoil detection analysis and a nominal thickness of 20 nm determined by ellipsometry on a flat reference substrate improve the overall NMC811||graphite cell capacity by ∼5% without negatively affecting the rate capability and long-term cycling stability.

3.
Small ; 18(14): e2107357, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182015

RESUMO

Lithium-ion batteries based on single-crystal LiNi1- x - y Cox Mny O2 (NCM, 1-x-y ≥ 0.6) cathode materials are gaining increasing attention due to their improved structural stability resulting in superior cycle life compared to batteries based on polycrystalline NCM. However, an in-depth understanding of the less pronounced degradation mechanism of single-crystal NCM is still lacking. Here, a detailed postmortem study is presented, comparing pouch cells with single-crystal versus polycrystalline LiNi0.60 Co0.20 Mn0.20 O2 (NCM622) cathodes after 1375 dis-/charge cycles against graphite anodes. The thickness of the cation-disordered layer forming in the near-surface region of the cathode particles does not differ significantly between single-crystal and polycrystalline particles, while cracking is pronounced for polycrystalline particles, but practically absent for single-crystal particles. Transition metal dissolution as quantified by time-of-flight mass spectrometry on the surface of the cycled graphite anode is much reduced for single-crystal NCM622. Similarly, CO2 gas evolution during the first two cycles as quantified by electrochemical mass spectrometry is much reduced for single-crystal NCM622. Benefitting from these advantages, graphite/single-crystal NMC622 pouch cells are demonstrated with a cathode areal capacity of 6 mAh cm-2 with an excellent capacity retention of 83% after 3000 cycles to 4.2 V, emphasizing the potential of single-crystalline NCM622 as cathode material for next-generation lithium-ion batteries.

4.
ACS Appl Mater Interfaces ; 14(3): 4111-4118, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015502

RESUMO

Solid-electrolyte interphases is essential for stable cycling of rechargeable batteries. The traditional approach for interphase design follows the decomposition of additives prior to the host electrolyte, which, as governed by the thermodynamic rule, however, inherently limits the viable additives. Here we report an alternative approach of using a nonsacrificial additive. This is exemplified by the localized high-concentration electrolytes, where the fluoroethylene carbonate (FEC) plays a nonsacrificial role for modifying the chemistry, structure, and formation mechanism of the cathode-electrolyte interphase (CEI) layers toward enhanced cycling stability. On the basis of ab initio molecular dynamics simulations, we further reveal that the unexpected activation of the otherwise inert species in the interphase formation is due to the FEC-Li+ coordinated environment that altered the electronic states of reactants. The nonsacrificial additive on CEI formation opens up alternative avenues for the interphase design through the use of the commonly overlooked, anodically stable compounds.

5.
Nat Commun ; 12(1): 5320, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493735

RESUMO

High nickel content in LiNixCoyMnzO2 (NCM, x ≥ 0.8, x + y + z = 1) layered cathode material allows high specific energy density in lithium-ion batteries (LIBs). However, Ni-rich NCM cathodes suffer from performance degradation, mechanical and structural instability upon prolonged cell cycling. Although the use of single-crystal Ni-rich NCM can mitigate these drawbacks, the ion-diffusion in large single-crystal particles hamper its rate capability. Herein, we report a strategy to construct an in situ Li1.4Y0.4Ti1.6(PO4)3 (LYTP) ion/electron conductive network which interconnects single-crystal LiNi0.88Co0.09Mn0.03O2 (SC-NCM88) particles. The LYTP network facilitates the lithium-ion transport between SC-NCM88 particles, mitigates mechanical instability and prevents detrimental crystalline phase transformation. When used in combination with a Li metal anode, the LYTP-containing SC-NCM88-based cathode enables a coin cell capacity of 130 mAh g-1 after 500 cycles at 5 C rate in the 2.75-4.4 V range at 25 °C. Tests in Li-ion pouch cell configuration (i.e., graphite used as negative electrode active material) demonstrate capacity retention of 85% after 1000 cycles at 0.5 C in the 2.75-4.4 V range at 25 °C for the LYTP-containing SC-NCM88-based positive electrode.

6.
ACS Appl Mater Interfaces ; 13(1): 650-659, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33382592

RESUMO

Lithium metal batteries (LMBs) have shown a huge prospect for next-generation energy storage devices, but are always plagued by the high reactivity of metallic Li and dendrite growth. Herein, we propose a strategy of localized electric field to achieve nondendritic and long-life LMBs. Li microparticles with conformal tin nanocoating (Sn@Li-MPs) are uniformly distributed in the hollow nitrogen-doped carbon shells/graphene host, in which each Sn@Li-MP works as a localized microelectric field, inducing even Li plating and stripping. Based on COMSOL simulation, the electric field relative intensity reaches the highest values at the gaps of neighboring Sn@Li-MPs. Therefore, Li+ ions are preferentially plated into the gaps to achieve smooth metallic Li. Additionally the interfacial nanosized Sn-Li alloy can effectively protect Sn@Li-MPs against parasitic reactions via reducing the contact with organic solvents. Attributed to these advantages, the symmetric Sn@Li-MPs battery displays a low overpotential of 0.32 V at a high current density of 10 mA cm-2 after 250 cycles. Coupled with the LiNi0.6Co0.2Mn0.2O2 layered cathode, the NCM622∥Sn@Li-MPs full battery exhibits an initial discharge capacity of 171.5 mA h g-1 at a 2 C discharge current rate and still retains 80.3% capacity after 949 cycles.

7.
Rev Sci Instrum ; 89(9): 093002, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278743

RESUMO

Although the determination of site occupancies is often a major goal in Rietveld refinement studies, the accurate refinement of site occupancies is exceptionally challenging due to many correlations and systematic errors that have a hidden impact on the final refined occupancy parameters. Through the comparison of results independently obtained from neutron and synchrotron powder diffraction, improved approaches capable of detecting occupancy defects with an exceptional sensitivity of 0.1% (absolute) in the class of layered NMC (Li[NixMnyCoz]O2) Li-ion battery cathode materials have been developed. A new method of visualizing the diffraction parameter space associated with crystallographic site scattering power through the use of f* diagrams is described, and this method is broadly applicable to ternary compounds. The f* diagrams allow the global minimum fit to be easily identified and also permit a robust determination of the number and types of occupancy defects within a structure. Through a comparison of neutron and X-ray diffraction results, a systematic error in the synchrotron results was identified using f* diagrams for a series of NMC compounds. Using neutron diffraction data as a reference, this error was shown to specifically result from problems associated with the neutral oxygen X-ray atomic form factor and could be eliminated by using the ionic O2- form factor for this anion while retaining the neutral form factors for cationic species. The f* diagram method offers a new opportunity to experimentally assess the quality of atomic form factors through powder diffraction studies on chemically related multi-component compounds.

8.
Small ; 14(40): e1802570, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30260569

RESUMO

Lithium-rich Li[Li1/6 Fe1/6 Ni1/6 Mn1/2 ]O2 (0.4Li2 MnO3 -0.6LiFe1/3 Ni1/3 Mn1/3 O2 , LFNMO) is a new member of the xLi2 MnO3 ·(1 - x)LiMO2 family of high capacity-high voltage lithium-ion battery (LIB) cathodes. Unfortunately, it suffers from the severe degradation during cycling both in terms of reversible capacity and operating voltage. Here, the corresponding degradation occurring in LFNMO at an atomic scale has been documented for the first time, using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), as well as tracing the elemental crossover to the Li metal anode using X-ray photoelectron spectroscopy (XPS). It is also demonstrated that a cobalt phosphate surface treatment significantly boosts LFNMO cycling stability and rate capability. Due to cycling, the unmodified LFNMO undergoes extensive elemental dissolution (especially Mn) and O loss, forming Kirkendall-type voids. The associated structural degradation is from the as-synthesized R-3m layered structure to a disordered rock-salt phase. Prior to cycling, the cobalt phosphate coating is epitaxial, sharing the crystallography of the parent material. During cycling, a 2-3 nm thick disordered Co-rich rock-salt structure is formed as the outer shell, while the bulk material retains R-3m crystallography. These combined cathode-anode findings significantly advance the microstructural design principles for next-generation Li-rich cathode materials and coatings.

9.
ChemSusChem ; 11(13): 2211-2220, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29717541

RESUMO

The long-term cycling performance, rate capability, and voltage stability of lithium (Li) metal batteries with LiNi0.76 Mn0.14 Co0.10 O2 (NMC76) cathodes is greatly enhanced by lithium bis(oxalato)borate (LiBOB) additive in the LiPF6 -based electrolyte. With 2 % LiBOB in the electrolyte, a Li∥NMC76 cell is able to achieve a high capacity retention of 96.8 % after 200 cycles at C/3 rate (1 C=200 mA g-1 ), which is the best result reported for a Ni-rich NMC cathode coupled with Li metal anode. The significantly enhanced electrochemical performance can be ascribed to the stabilization of both the NMC76 cathode/electrolyte and Li-metal-anode/electrolyte interfaces. The LiBOB-containing electrolyte not only facilitates the formation of a more compact solid-electrolyte interphase on the Li metal surface, it also forms a enhanced cathode electrolyte interface layer, which efficiently prevents the corrosion of the cathode interface and mitigates the formation of the disordered rock-salt phase after cycling. The fundamental findings of this work highlight the importance of recognizing the dual effects of electrolyte additives in simultaneously stabilizing both cathode and anode interfaces, so as to enhance the long-term cycle life of high-energy-density battery systems.

10.
Adv Mater ; 30(21): e1706102, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29575163

RESUMO

Rechargeable lithium-metal batteries (LMBs) are regarded as the "holy grail" of energy-storage systems, but the electrolytes that are highly stable with both a lithium-metal anode and high-voltage cathodes still remain a great challenge. Here a novel "localized high-concentration electrolyte" (HCE; 1.2 m lithium bis(fluorosulfonyl)imide in a mixture of dimethyl carbonate/bis(2,2,2-trifluoroethyl) ether (1:2 by mol)) is reported that enables dendrite-free cycling of lithium-metal anodes with high Coulombic efficiency (99.5%) and excellent capacity retention (>80% after 700 cycles) of Li||LiNi1/3 Mn1/3 Co1/3 O2 batteries. Unlike the HCEs reported before, the electrolyte reported in this work exhibits low concentration, low cost, low viscosity, improved conductivity, and good wettability that make LMBs closer to practical applications. The fundamental concept of "localized HCEs" developed in this work can also be applied to other battery systems, sensors, supercapacitors, and other electrochemical systems.

11.
ACS Appl Mater Interfaces ; 10(3): 2469-2479, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29281242

RESUMO

The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of lithium (Li) metal batteries are systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) are chosen for this study and compared with the conventional LiPF6 salt. Density functional theory calculations indicate that the chemical and electrochemical stabilities rank in the following order: LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiFSI-LiBOB. The experimental cycling stability of the Li metal batteries with the electrolytes ranks in the following order: LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiPF6 > LiFSI-LiBOB, which is in well accordance with the calculation results. The LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. The key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high-performance Li metal batteries.

12.
ACS Appl Mater Interfaces ; 10(4): 3522-3529, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29286631

RESUMO

In this work, we first report the composite of CuNi2(PO4)2/C (CNP/C) can be employed as the high-capacity conversion-type cathode material for rechargeable Li-ion batteries (LIBs), delivering a reversible capacity as high as 306 mA h g-1 at a current density of 20 mA g-1. Furthermore, CNP/C also presents good rate performance and reasonable cycling stability based on a nontraditional conversion reaction mode. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) characterizations show that CNP is reduced to form Cu/Ni and Li3PO4 during the discharging process, which is reversed in the following charging process, demonstrating that a reversible conversion reaction mechanism occurs. X-ray absorption spectroscopy (XAS) discloses that Ni2+/Ni0 exhibits a better reversibility compared to Cu2+/Cu during the conversion reaction process, while Cu0 is more difficult to be reoxidized during the recharge process, leading to capacity loss as a consequence. The fundamental understanding obtained in this work provides some important clues to explore the high-capacity conversion-type cathode materials for rechargeable LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA