RESUMO
Human activities led to elevation in carbon dioxide (CO2) concentrations in atmosphere. While such increase per se may be beneficial for the growth of some crops, it comes with a caveat of affecting crop nutritional status. Here, we present a comprehensive analysis of changes in concentration of essential (Cu, Fe, Mn, Zn, Mo, Ni) and non-essential (Ba, Cd, Cr, Hg, Pb, and Sr) heavy metals in response to elevated CO2, drawing on a meta-analysis of 1216 paired observations. The major findings are as follows: (1) Elevated CO2 leads to reduced concentrations of Cu, Fe, Mn, and Zn in crops; (2) the extent of above reduction varies among plants species and is most pronounced in cereals and then in legumes and vegetables; (3) reduction in accumulation of non-essential (toxic) metals is less pronounced, potentially leading to an unfavorable essential/non-essential metal ratio in plants; (4) the above effects will come with significant implication to human health, exacerbating effects of the "hidden hunger" caused by the lack of Fe and Zn in the human diets. The paper also analyses the mechanistic basis of nutrient acquisition (both at physiological and molecular levels) and calls for the changes in the governmental policies to increase efforts of plant breeders to create genotypes with improved nutrient use efficiency for essential micronutrients while uncoupling their transport from non-essential (toxic) heavy metals.
Assuntos
Dióxido de Carbono , Produtos Agrícolas , Segurança Alimentar , Metais Pesados , Humanos , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Segurança Alimentar/métodos , Metais Pesados/análise , Metais Pesados/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismoRESUMO
This study developed a microelectrolysis-integrated constructed wetland with pyrite filler around the cathode (e-PCW) to treat eutrophic water. Results indicated that e-PCW effectively enhanced pyrite dissolution, converting solid-phase electron donors into bioavailable forms, thereby facilitating the enrichment of various denitrifying bacteria on pyrite surfaces. Importantly, iron-reducing and sulfur-reducing bacteria attached to the pyrite surfaces enhanced the conversion of ferric iron and sulfate, thereby driving iron and sulfur cycles and promoting electron transfer. Therefore, synergistic effects of pyrite and microelectrolysis made e-PCW achieve higher total nitrogen (TN) and total phosphorus (TP) removal efficiencies. With a hydraulic retention time of 24 h, the highest removal efficiencies of TN and TP achieved 78% and 75%, respectively. Furthermore, when eutrophic water containing high concentration of algae was fed into e-PCW, it consistently demonstrated superior TN and TP removal capabilities. This work provides a valuable approach to optimizing constructed wetland technology for treating eutrophic water.
Assuntos
Ferro , Sulfetos , Enxofre , Purificação da Água , Áreas Alagadas , Ferro/química , Sulfetos/química , Purificação da Água/métodos , Eutrofização , Nitrogênio , Fósforo , Eletrodos , Biodegradação AmbientalRESUMO
Harmful algal blooms (HABs) due to eutrophication are becoming a serious ecological disaster worldwide, threatening human health and the optimal balance of aquatic ecosystems. The traditional approaches to eradicate HABs yield several drawbacks in practical application, while microbial algicidal technology is garnering mounting recognition due to its high efficiency, eco-friendliness, and low cost. In our previous study, we isolated a bacterium strain Raoultella sp. S1 from eutrophic water with high efficiency of algicidal properties. This study further investigated the flocculation and inactivation efficiency of S1 on Microcystis aeruginosa at different eutrophic stages by customizing the algal cell densities. The supernatant extract of S1 strain exhibited remarkable flocculation and inactivation effects against low (1 × 106 cell/mL)and medium (2.7 × 106 cell/mL)concentrations of algal cells, but unexceptional for higher densities. The results further revealed that algal cells at low and medium counts manifested a more apparent antioxidant defense response, while the photosynthetic efficiency and relative electron transport rate were considerably reduced within 24 h. TEM observations confirmed the disruption of thylakoid membranes and cell structure of algal cells by algicidal substances. Moreover, TMT proteomics revealed alterations in protein metabolic pathways of algal cells during the flocculation and lysis stages at the molecular biological level. This signified that the disruption of the photosynthetic system is the core algicidal mechanism of S1 supernatant. In contrast, the photosynthetic metabolic pathways in the HABs were significantly upregulated, increasing the energy supply for the NADPH dehydrogenation process and the upregulation of ATPases in oxidative phosphorylation. Insufficient energy provided by NADPH resulted in a dwindled electron transport rate, stagnation of carbon fixation in dark reactions, and blockage of light energy conversion into chemical energy. Nonetheless, carbohydrate metabolism (gluconeogenesis and glycolysis) proteins were down-regulated and hampered DNA replication and repair. This study aided in unveiling the bacterial management of eutrophication by Raoultella sp. S1 and further arrayed the proteomic mechanism of algal apoptosis.
Assuntos
Microcystis , Humanos , Microcystis/metabolismo , Proteômica , Ecossistema , NADP/metabolismo , Proliferação Nociva de Algas , EnterobacteriaceaeRESUMO
Recently, harmful algal blooms (HABs) have become occurred with increasingly frequency worldwide. High nitrate content is one of the primary causes of eutrophication. Research has shown that photocatalytic materials enhance the effectiveness of microbial denitrification while removing other contaminants, despite some shortcomings. Based on this, we loaded TiO2/C3N4 heterojunctions onto weaveable, flexible carbon fibers and established a novel photocatalytically enhanced microbial denitrification system for the simultaneous removal of harmful algae and Microcystin-LR. We found that 99.35% of Microcystis aeruginosa and 95.34% of MC-LR were simultaneously and effectively removed. Compared to existing denitrification systems, the nitrate removal capacity improved by 72.33%. The denitrifying enzyme activity and electron transport system activity of microorganisms were enhanced by 3.54-3.86 times. Furthermore, the microbial community structure was optimized by the regulation of photogenerated electrons, and the relative abundance of main denitrifying bacteria increased from 50.72% to 66.45%, including Proteobacteria and Bacteroidetes. More importantly, we found that the increased secretion of extracellular polymeric substances by microorganisms may be responsible for the persistence of the reinforcing effect caused by photogenerated electrons in darkness. The higher removal of Microcystis aeruginosa and Microcystin-LR (MC-LR) achieved by the proposed system would reduce the frequency of HAB outbreaks and prevent the associated secondary pollution.
Assuntos
Desnitrificação , Microcystis , Nitratos , Proliferação Nociva de Algas , Microcystis/química , Microcistinas/química , Transporte de ElétronsRESUMO
Integrating sponge iron (SI) and microelectrolysis individually into constructed wetlands (CWs) to enhance nitrogen and phosphorus removal are challenged by ammonia (NH4+-N) accumulation and limited total phosphorus (TP) removal efficiency, respectively. In this study, a microelectrolysis-assisted CW using SI as filler surrounding the cathode (e-SICW) was successfully established. Results indicated that e-SICW reduced NH4+-N accumulation and intensified nitrate (NO3--N), the total nitrogen (TN) and TP removal. The concentration of NH4+-N in the effluent from e-SICW was lower than that from SICW in the whole process with 39.2-53.2 % decrease, and as the influent NO3--N concentration of 15 mg/L and COD/N ratio of 3, the removal efficiencies of NO3--N, TN and TP in e-SICW achieved 95.7 ± 1.9 %, 79.8 ± 2.5 % and 98.0 ± 1.3 %, respectively. Microbial community analysis revealed that hydrogen autotrophic denitrifying bacteria of Hydrogenophaga was highly enriched in e-SICW.
Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/análise , Fósforo/análise , Ferro , DesnitrificaçãoRESUMO
Fine root traits are critical to plant nutrition and water uptake, and soil nutrient cycling. The impacts of climate warming on woody plants are predicted to be severe, but the effects on the fine root traits of woody plants remain unclear. To evaluate the effects of warming on fine-root traits of woody plants, we synthesized 431 paired observations of 13 traits from 78 studies. The result showed that warming increased the fine root nitrogen (N) concentration, root mortality, and root respiration, but decreased fine root phosphorus (P) concentration, root C:N and root nonstructural carbohydrates (NSC) concentration. However, warming had no significant effect on fine root biomass, root production and morphological traits. Warming effects on fine root biomass and root diameter decreased with warming magnitude, while root P concentration increased. Moreover, with increasing warming duration, the effect size of specific root length (SRL), root length, root C:N and root NSC increased. The effects size of root biomass, root diameter, root length and root C:N decreased with mean annual temperature (MAT) and mean annual precipitation (MAP) increase. However, the effect size of root N concentration increased with higher MAT and MAP. Furthermore, warming increased the fine root biomass of ectomycorrhiza (ECM) plants, but decreased that of plants associated with arbuscular mycorrhizal (AM) fungi. These results indicate that the effect of warming on fine root traits of woody plants was not only modulated by warming duration and magnitude, but also MAT and MAP. Our findings highlight the differential warming responses to fine root traits of woody plants, which have strong implications for shrubs and tree-dominated ecosystems soil nutrients cycling and carbon stocks.
Assuntos
Ecossistema , Micorrizas , Raízes de Plantas/microbiologia , Micorrizas/fisiologia , Plantas , Biomassa , Carboidratos , Nitrogênio , SoloRESUMO
In this study, a strain was isolated from a sewage treatment plant in Jiangsu Province, China. The strain was identified as Brevundimonas sp. KX-1. After 5 days, 50.2% 3-chlorocarbazole (3-CCZ) was degraded under the optimum condition as follows: 1 g/L starch, 30 °C, pH 6.5 and 50 mg/L 3-CCZ. The degradation of 3-CCZ by KX-1 conformed to the first-order kinetic model under different initial concentrations in this experiment. The intermediate product of 3-CCZ degradation was identified as (2E,4Z)-6-(2-amino-5-chlorophenyl)-2-hydroxy-6-oxohexa-2,4-dienoic acid. The activities of the meta-cleavage enzymes for biphenyl-2,3-diol (the analogs of intermediate product 2'-amino-5'-chloro-[1,1'-biphenyl]-2,3-diol) were measured with the crude extracts of cells grown in the presence of 3-CCZ. The complete genome of KX-1 was sequenced and compared with the Brevundimonas diminuta BZC3. BZC3 and KX-1 belonged to the same species, displaying the genetic similarity of 99%. But BZC3 could efficiently degrade gentamicin for the potential microbial function analysis. Compared with BZC3, KX-1 possessed the primary function annotations about transportation and metabolism of amino acids (6.65%) and the transportation and metabolism of carbohydrates (5.96%). In addition, KX-1 was rich in sucrose and starch metabolism pathways (ko00500) compared with the genome of BZC3, indicating the high efficiency of KX-1 for starch utilization during degradation. This article reveals the difference between strain KX-1 and bacteria of the same genus in terms of the whole genome sequence, demonstrating that KX-1 is a novel strain Brevundimonas with the ability to degrade 3-CCZ.
Assuntos
Carbazóis , Ácidos Graxos , Ácidos Graxos/análise , Carbazóis/análise , Compostos de Bifenilo , Bactérias Aeróbias , Filogenia , Biodegradação AmbientalRESUMO
Ionic liquids (ILs) are widely used in frontier fields because of their highly tunable properties. Although ILs may have adverse effects on organisms, few studies have focused on their effect on earthworm gene expression. Herein we investigated the toxicity mechanism of different ILs towards Eisenia fetida using transcriptomics. Earthworms were exposed to soil containing different concentrations and types of ILs, and behavior, weight, enzymatic activity and transcriptome were analyzed. Earthworms exhibited avoidance behavior towards ILs and growth was inhibited. ILs also affected antioxidant and detoxifying enzymatic activity. These effects were concentration and alkyl chain length-dependent. Analysis of intrasample expression levels and differences in transcriptome expression levels showed good parallelism within groups and large differences between groups. Based on functional classification analysis, we speculate that toxicity mainly occurs through translation and modification of proteins and intracellular transport functions, which affect protein-related binding functions and catalytic activity. KEGG pathway analysis revealed that ILs may damage the digestive system of earthworms, among other possible pathological effects. Transcriptome analysis reveals mechanisms that cannot be observed by conventional toxicity endpoints. This is useful to evaluate the potential environmental adverse effects of the industrial use of ILs.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Líquidos Iônicos , Oligoquetos , Poluentes do Solo , Animais , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Oligoquetos/metabolismo , Imidazóis/toxicidade , Antioxidantes/metabolismo , Solo/química , Poluentes do Solo/metabolismoRESUMO
Fine roots play key roles in belowground C cycling in terrestrial ecosystems. Based on their distinct functions, fine roots are either absorptive fine roots (AFRs) or transport fine roots (TFRs). However, the function-based fine root dynamics of trees and their responses to forest stand properties remain unclear. Here, we studied the dynamics of AFRs and TFRs and their responses to stand conditions and root density in a subtropical montane mixed forest based on a 2-a root window experiment. Mean (± SE) annual production, mortality, and turnover rate of AFRs were 7.87 ± 0.17 m m-2 a-1, 8.13 ± 0.20 m m-2 a-1and 2.96 ± 0.24 a-1, respectively, compared with 7.09 ± 0.17 m m-2 a-1, 4.59 ± 0.17 m m-2 a-1, and 2.01 ± 0.22 a-1, respectively, for TFRs. The production and mortality of fine roots were significantly higher in high root-density sites than in low-root density sites, whereas the turnover of fine roots was faster in the low root-density sites. Furthermore, root density had a larger positive effect than other environmental factors on TFR production but had no obvious impact on AFR production. Tree species diversity had an apparent positive effect on AFR production and was the crucial driver of AFR production, probably due to a complementary effect, but had no evident impact on TFR. Both tree density and tree species diversity were positively correlated with the mortality of AFRs and negatively related to the turnover of TFRs, suggesting that higher root density caused stronger competition for rooting space and that plants tend to reduce maintenance costs by decreasing TFR turnover. These findings illustrated the importance of root functional groups in understanding root dynamics and their responses to changes in environmental conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s11676-022-01514-0.
RESUMO
Nowadays, polyhalogenated carbazoles (PHCZs) are a major pollutant that has recently sparked widespread concern. In this work, peroxymonosulfate (PMS) was activated by zero valent iron (Fe0) to remove 3,6-dichlorocarbazole (3,6-CCZ). First, the key parameters influencing 3,6-CCZ degradation (PMS dosage, Fe0 dosage, initial pH, temperature and co-existing ions) were determined. Under the determined optimum conditions, the removal rate of 3,6-CCZ reached 100% within 1.5â h. Sulfate radicals (SO4·-), hydroxyl radicals (OH·), and singlet oxygen (1O2) generated in the reaction were directly identified with 0.1 M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO) by in-situ electron paramagnetic resonance (EPR) and indirectly identified by radical quenching experiments. The main reactive oxygen species (ROS) were different from most reported hydroxyl radicals (OH·) and sulfate radicals (SO4·-). In this study, it was found that OH· and 1O2 play a major role. Then, fresh and reacted Fe0 were characterized by XRD, SEM, and XPS. Iron corrosion products such as Fe2O3, Fe3O4, and FeOOH were generated. Finally, 3,6-CCZ degradation intermediates were identified by GC-MS and its degradation pathway was speculated. The intermediate pathway confirmed the combined action of (OH·) and (1O2) in 3,6-CCZ removal. This study provides new insight into the activation mechanism of Fe0-activated PMS and the removal mechanism of 3,6-CCZ.Highlights Fe0 is a long-lasting and efficient catalyst of PMS for the degradation of 3,6-CCZ.The key parameters influencing 3,6-CCZ degradation were determined.The degradation pathways of 3,6-CCZ were inferred.OH· and 1O2 were the main ROS in Fe0-activated PMS system.
Assuntos
Ferro , Peróxidos , Espécies Reativas de Oxigênio , Peróxidos/química , Ferro/química , Oxigênio , Radical Hidroxila/química , SulfatosRESUMO
Harmful algal blooms (HABs) destroy the balance of the aquatic ecosystem, causing huge economic losses and even further endangers human health. In addition to traditional methods of algae removal, photocatalytic inhibition of algae is drawing more and more interests with rich application scenarios and considerable potential. Simulated visible light sources are used to excite photocatalytic materials and optimize their performance. However, most of the light irradiation intensities used in the study exceeded 50 mW/cm2. And the effects of intense light irradiation conditions on algal growth have rarely been addressed in previous studies. So we focused on the effect of different intensity of light irradiation on the growth of algae. We explored the relationship between light irradiation intensity and algal inactivation rate, and investigated the changes in ROS levels in algal cells under different light irradiation and the resulting response of the antioxidant system. We have found that several major antioxidant enzyme activities, such as SOD and CAT, were significantly higher and lipid peroxidation products (MDA) were accumulating. Intense light irradiation had the most direct effect on the photosynthetic system of algal cells, with the photosynthetic rate and relative electron transfer rate decaying to almost 0 within 30 min, indicating that algal photosynthesis was inhibited in a fairly short period of time. We further observed the physiological and morphological changes of algal cells during this process using TEM and found that the progressive dissolution of the cell membrane system and the damage of organelles associated with photosynthesis play a major role in promoting cell death. We thus conclude that light irradiation has a significant effect on the physiological activity of algal cells and is a non-negligible factor in the study of photocatalytic removal of harmful algae. It will provide theoretical guidance for the future study of photocatalysis on algae inhibition.
Assuntos
Antioxidantes , Ecossistema , Proliferação Nociva de Algas , Espécies Reativas de Oxigênio/metabolismo , Superóxido DismutaseRESUMO
Nitrogen (N) deposition has complex effects on vegetation dynamics and nutrient cycling in terrestrial ecosystems. However, how N deposition alters fine root traits remains unclear in forest ecosystems. Here, we carried out a synthesis based on 890 paired observations of 14 fine root traits from 79 articles to assess the effects of N deposition on fine root traits. The results showed that N deposition mainly affected root nutrient content and stoichiometry. Specifically, N deposition increased the root N content, root carbon: phosphorus (C:P) and root nitrogen: phosphorus (N:P) ratio, but decreased the root P content and root C:N ratio. Moreover, N deposition increased fine root respiration, but had no significant effect on other root morphological and physiological traits. N deposition effects on fine root biomass, root tissue density and fungal colonization decreased with N deposition duration. Compared to fine root P content, N deposition effects on fine root C content and C:P ratio increased with N deposition level. Moreover, the interaction between N deposition level and duration significantly affected fine root biomass. N deposition effects on fine-root biomass decreased with greater N deposition duration, especially in high N deposition experiments. Moreover, the effect of N deposition on root diameter decreased with mean annual temperature and mean annual precipitation. N form, forest type and soil depth significantly affect the effect of N deposition on fine root C:P. Therefore, the effects of N deposition on fine root traits were not only determined by N deposition level, duration and their interactions, but also regulated by abiotic factors. These findings highlight the diverse responses of fine root traits to N deposition have strong implications for forest ecosystems soil carbon stocks in a world of increasing N deposition associated with decreased root-derived carbon inputs and increases in fine-root respiration.
Assuntos
Ecossistema , Nitrogênio , Biomassa , Carbono , Florestas , Nitrogênio/análise , Fósforo , Raízes de Plantas/química , SoloRESUMO
Ionic liquids (ILs1) are used widely because of their excellent properties. However, their ecotoxicity for environment has aroused great concern. Here we studied, the toxicity of three ILs with different numbers of methyl substituents and anions as well as the combined effect of heavy metals to edible algae Nostoc punctiforme. The results show that fresh weight and chlorophyll content decreased, indicating that the growth and photosynthesis were adversely affected. Polysaccharides and soluble protein contents decreased, resulting in a reduced nutritional value of Nostoc punctiforme. ILs can produce many reactive oxygen species (ROS), which lead to increased the malondialdehyde (MDA) content. In order to remove excessive ROS, antioxidant enzymes activity is increased, but decreases under high IL concentration, because the structure and function of the enzymes became damaged. ILs cause stress to algae, as the cell ultrastructure is indicating by increased amounts of starch and osmiophilic globules. The combined action of heavy metals with ILs decreases the antioxidant enzymes activity and chlorophyll content, and increases the MDA content. The results show that the order of toxicity is [C8MIM]Cl >[C8MIM]Br> [C8DMIM]Br. The combination of heavy metals and ILs cause an increase of the toxicity to Nostoc punctiforme.
Assuntos
Líquidos Iônicos , Metais Pesados , Nostoc , Antioxidantes/metabolismo , Clorofila/metabolismo , Imidazóis/farmacologia , Líquidos Iônicos/química , Metais Pesados/toxicidade , Nostoc/metabolismo , Estresse Oxidativo , Fotossíntese , Espécies Reativas de Oxigênio/metabolismoRESUMO
Phenanthrene (PHE) is a typical compound biomagnified in the food chain which endangers human health and generally accumulates from marine life. It has been listed as one of the 16 priority PAHs evaluated in toxicology. In order to evaluate the changes of CYP1A GST mRNA expression and EROD GST enzyme activity in carp exposed to lower than safe concentrations of PHE. Long-term exposure of carp to PHE at lower than safe concentrations for up to 25 days. The mRNA expression level and cytochrome P450 (CYP1A/EROD (7-Ethoxylesorufin O-deethylase)) and glutathione S-transferase (GST) activity were measured in carp liver and brain tissue. The results showed that PHE stress induced low-concentration induction and high-concentration inhibition of CYP1A expression and EROD enzyme activity in the liver and brain of carp. In both two organs, GST enzyme activity was also induced. However, the expression of GST mRNA was first induced and then inhibited, after the 15th day. These results indicate that long-term exposure to PHE at lower than safe concentrations still poses a potential threat to carp's oxidase system and gene expression.
Assuntos
Carpas , Fenantrenos , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Fígado/metabolismo , Fenantrenos/metabolismo , Fenantrenos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidadeRESUMO
As an emerging class of organic contaminants, polyhalogenated carbazoles (PHCZs) have been increasingly detected all over the world since 1980s. Due to the environmental persistence, bioaccumulation, and dioxin-like toxicity, PHCZs have aroused widespread concerns in recent years. However, efficient approach for the degradation of PHCZs is quite limited so far. Therefore, in this study, an advanced oxidation process (AOP), sulfidated zero-valent iron/peroxymonosulfate (S-ZVI/PMS) system was used to degrade 3-chlorocarbazole (3-CCZ), which is one of the mostly detected PHCZs congeners. The degradation of 3-CCZ was systematically studied under different conditions by varying the molar ratio of S/Fe, the dosage of S-ZVI or PMS, pH and temperature. The results indicated that S-ZVI/PMS was an effective strategy for PHCZs treatment. The 20-min degradation efficiency of 3-CZZ was up to 96.6% with the pseudo-first-order rate constant of 0.168 min-1 under the conditions of 5 mg/L 3-CZZ, 0.3 g/L S-ZVI (S/Fe = 0.2), 1.0 mM PMS, pH 5.8 and 25 °C. HCO3-, Cl- and humic acid (HA) showed inhibitory effects to different degrees. Results of the electron paramagnetic resonance (EPR) and scavenging experiments clarified the dominant role of â¢OH, followed by 1O2 and SO4â¢â. The product analysis and DFT calculation revealed three degradation pathways of 3-CCZ, namely hydroxylation, dechlorination and C-N bond cleavage, which largely alleviated the toxicity of the parent compound. This study showed the effectiveness of S-ZVI/PMS system in PHCZs treatment and provided a comprehensive investigation on the degradation behaviors of PHCZs in AOPs.
Assuntos
Ferro , Poluentes Químicos da Água , Carbazóis , Ferro/química , Cinética , Peróxidos/química , Água , Poluentes Químicos da Água/análiseRESUMO
Ionic liquids (ILs) are used as detoxication agents for fermentation of lignin into ethanol because of their good applicability. However, the residual ILs may be toxic to the yeast. In order to improve the use of ILs for fermentation and protected environment, the toxicity of ILs with different carbon chain length to Pichia stipitis was studied in this paper. Four kinds of common imidazolium chloride ILs ([C4mim]Cl, [C6mim]Cl, [C8mim]Cl and [C10mim]Cl) were selected. ILs can inhibit the proliferation of Pichia stipitis and increase their mortality. Oxidative stress reaction occurred in the cells, and the activities of antioxidant enzymes are affected. Comparing with the integrated biomarker response (IBR) index, it was found that the toxicity increases with increasing chain length. ILs may enter cells by damaging cell membranes and reduce ethanol production by damaging organelles such as mitochondria. ILs caused wrinkles and dents on the surface of cells up to cell deformation and even rupture. The toxicity sequence was as follows: [C10mim]Cl> [C8mim]Cl>[C6mim]Cl>[C4mim]Cl. Due to this toxicity to Pichia stipitis, these compounds should be used carefully in the fermentation process and also to avoid toxic effects on other organisms in the environment.
Assuntos
Líquidos Iônicos , Carbono , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , SaccharomycetalesRESUMO
Water eutrophication caused by harmful algal blooms (HABs) occurs worldwide. It causes huge economic losses and has serious and potentially life-threatening effects on human health. In this study, the bacterium Raoultella sp. S1 with high algicidal efficiency against the harmful algae Microcystis aeruginosa was isolated from eutrophic water. The results showed that Raoultella sp. S1 initially flocculated the algae, causing the cells to sediment within 180â¯min and then secreted soluble algicidal substances that killed the algal cells completely within 72â¯h. The algicidal activity was stable across the temperature range -85.0 to 85.0⯰C and across the pH range 3.00-11.00. Scanning electron microscopy (SEM) revealed the crumpling and fragmentation of cells algal cells during the flocculation and lysis stages. The antioxidant system was activated under conditions of oxidative stress, causing the increased antioxidant enzymes activities. Meanwhile, the oxidative stress response triggered by the algicidal substances markedly increased the malondialdehyde (MDA) and glutathione (GSH) content. We investigated the content of Chl-a and the relative expression levels of genes related to photosynthesis, verifying that the algicidal compounds attack the photosynthetic system by degrading the photosynthetic pigment and inhibiting the expression of key genes. Also, the results of photosynthetic efficiency and relative electric transport rate confirmed that the photosynthetic system in algal cells was severely damaged within 24â¯h. The algicidal effect of Raoultella sp. S1 against Microcystis aeruginosa was evaluated by analyzing the physiological response and photosynthetic system impairment of the algal cells. The concentration of microcystin-LR (MC-LR) slightly increased during the process of algal cells ruptured, and then decreased below its initial level due to the biodegradation of Raoultella sp. S1. To further investigate the algicidal mechanism of Raoultella sp. S1, the main components in the cell-free supernatant was analyzed by UHPLC-TOF-MS. Several low-molecular-weight organic acids might be responsible for the algicidal activity of Raoultella sp. S1. It is concluded that Raoultella sp. S1 has the potential to control Microcystis aeruginosa blooms.
Assuntos
Microcystis , Antioxidantes , Enterobacteriaceae , Proliferação Nociva de Algas , Humanos , Microcistinas/toxicidade , FotossínteseRESUMO
Ionic liquids (ILs1) which are called "green solvents", are used widely in the textile industry as adjuvants due to their many advantages. However, their persistent residues may cause ecotoxicity. The aim of the study is to explore the toxicity of different anions on imidazole ILs and their toxicological mechanism. For the experiments 1-butyl-3-methylimidazole tetrafloroborate ([C4mim]BF4) and 1- butyl -3-methylimidazolium chloride ([C4mim]Cl) were selected to study their toxic effects on Isatis tinctoria. ILs may affect the germination rate. Fresh weight, dry weight and Hill reaction activity decreased continuously with increasing of IL concentrations, showing an effect-dose relationship. Transmission electron microscopy (TEM) revealed that cell walls were fuzzy, starch granules had accumulated and the chloroplast structure was damaged. These changes will affected the function and electron transport efficiency of photosystemâ ¡. Superoxide anion accumulation stimulated the activity of antioxidant enzymes (SOD, POD, CAT) and caused lipid peroxidation as well as an increased malondialdehyde content. ILs also reduced indirubin and total flavonoids contents, which reduced the pharmacological efficacy of Isatis tinctoria. This is demonstrated by three-dimensional fluorescence chromatogram. [C4mim]Cl was more toxic than [C4mim]BF4. ILs caused toxic effects to Isatis tinctoria. The ecological toxicity of ILs should be considered when using them as additives in the textile industry.
Assuntos
Líquidos Iônicos , Isatis , Ânions , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Indústria TêxtilRESUMO
Functional trait data enhance climate change research by linking climate change, biodiversity response, and ecosystem functioning, and by enabling comparison between systems sharing few taxa. Across four sites along a 3000-4130 m a.s.l. gradient spanning 5.3 °C in growing season temperature in Mt. Gongga, Sichuan, China, we collected plant functional trait and vegetation data from control plots, open top chambers (OTCs), and reciprocally transplanted vegetation turfs. Over five years, we recorded vascular plant composition in 140 experimental treatment and control plots. We collected trait data associated with plant resource use, growth, and life history strategies (leaf area, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N and P content and C and N isotopes) from local populations and from experimental treatments. The database consists of 6,671 plant records and 36,743 trait measurements (increasing the trait data coverage of the regional flora by 500%) covering 11 traits and 193 plant taxa (ca. 50% of which have no previous published trait data) across 37 families.
Assuntos
Altitude , Mudança Climática , Ecossistema , Plantas/classificação , Temperatura , Biodiversidade , China , Folhas de Planta/fisiologiaRESUMO
The development of oxygen reaction reduction (ORR) electrocatalysts that are low-cost, highly-active and have long-term stability for use in energy conversion and storage applications such as fuel cells and metal-air batteries is very important. In this paper, a facile one-step pyrolysis method was used to prepare bamboo-like N-doped carbon nanotubes (BNCNTs) as effective ORR electrocatalysts. Manganese and cobalt salts were used as the metal precursors, and urea was the C and N source. The resulting catalysts were characterized by the scanning electron microscopy, high resolution-transmission electron microscopy, X-ray photoelectron spectroscopy, Raman microscopy and X-ray power diffraction. The BNCNTs contained Mn and Co nanoparticles that were coated with graphitic carbon. The electrochemical performances of the catalysts in alkaline media were evaluated using cyclic voltammetry, linear sweep voltammetry and chronoamperometry. The BNCNTs prepared with a Mn to Co molar ratio of 1:1 at 800⯰C had the best catalytic activity. The reaction followed a quasi-4 electron reaction pathway with a smaller Tafel slope (57.5â¯mV dec-1) than that of the commercial Pt/C (72.8â¯mV dec-1). In addition, the limiting current density, durability and methanol crossover resistance were all superior to those of Pt/C. The above results indicate that Mn/Co-BNCNTs-800 is an active electrocatalyst with earth-abundant non-precious elements for ORR.