Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2316580121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377204

RESUMO

Achieving high-performance materials with superior mechanical properties and electrical conductivity, especially in large-sized bulk forms, has always been the goal. However, it remains a grand challenge due to the inherent trade-off between these properties. Herein, by employing nanodiamonds as precursors, centimeter-sized diamond/graphene composites were synthesized under moderate pressure and temperature conditions (12 GPa and 1,300 to 1,500 °C), and the composites consisted of ultrafine diamond grains and few-layer graphene domains interconnected through covalently bonded interfaces. The composites exhibit a remarkable electrical conductivity of 2.0 × 104 S m-1 at room temperature, a Vickers hardness of up to ~55.8 GPa, and a toughness of 10.8 to 19.8 MPa m1/2. Theoretical calculations indicate that the transformation energy barrier for the graphitization of diamond surface is lower than that for diamond growth directly from conventional sp2 carbon materials, allowing the synthesis of such diamond composites under mild conditions. The above results pave the way for realizing large-sized diamond-based materials with ultrahigh electrical conductivity and superior mechanical properties simultaneously under moderate synthesis conditions, which will facilitate their large-scale applications in a variety of fields.

2.
J Phys Chem Lett ; 14(38): 8421-8427, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37712525

RESUMO

Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO-LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2δ- species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.

3.
J Phys Chem Lett ; 13(27): 6367-6375, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35796604

RESUMO

Magnetic single-atom catalysts (MSAC), due to the intrinsic spin degree of freedom, are of particular importance relative to other conventional SAC for applications in various catalytic processes, especially in those cases that involve spin-triplet O2. However, the bottleneck issue in this field is the clustering of the SAC during the processes. Here using first-principles calculations we predict that Mn atoms can be readily confined in the interface of the porous g-C3N4/CeO2(111) heterostructure, forming high-performance MSAC for O2 activation via a delicate synergetic mechanism of charge transfer, mainly provided by the p-block g-C3N4 overlayer mediated by the d-block Mn active site, and spin selection, preserved mainly through active participation of the f-block Ce atoms and/or g-C3N4, which effectively promotes the CO oxidization. Such a recipe is also demonstrated to be valid for V- and Nb-MSACs, which may shed new light on the design of highly efficient MSACs for various important chemical processes wherein spin-selection matters.

4.
Nano Lett ; 22(9): 3744-3750, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35437988

RESUMO

Deciphering the precise physical mechanism of interaction between an adsorbed species and a reactive site in heterogeneous catalysis is crucial for predictive design of highly efficient catalysts. Here, using first-principles calculations we identify that the two-dimensional ferromagnetic metal organic framework of Mn2C18H12 can serve as a highly efficient single-atom catalyst for spin-triplet O2 activation and CO oxidation. The underlying mechanism is via "concerted charge-spin catalysis", involving a delicate synergetic process of charge transfer, provided by the hosting Mn atom, and spin selection, preserved through active participation of its nearest neighboring Mn atoms for the crucial step of O2 activation. The synergetic mechanism is further found to be broadly applicable in O2 adsorption on magnetic X2C18H12 (X = Mn, Fe, Co, and Ni) with a well-defined linear scaling dependence between the chemical activity and spin excitation energy. The present findings provide new insights into chemical reactions wherein spin selection plays a vital role.

5.
Adv Sci (Weinh) ; 9(2): e2103443, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34761558

RESUMO

At the macroscopic scale, the friction force (f) is found to increase with the normal load (N), according to the classic law of Da Vinci-Amontons, namely, f = µN, with a positive definite friction coefficient (µ). Here, first-principles calculations are employed to predict that, the static force f, measured by the corrugation in the sliding potential energy barrier, is lowered upon increasing the normal load applied on one layer of the recently discovered ferroelectric In2 Se3 over another commensurate layer of In2 Se3 . That is, a negative differential friction coefficient µ can be realized, which thus simultaneously breaking the classic Da Vinci-Amontons law. Such a striking and counterintuitive observation can be rationalized by the delicate interplay of the interfacial van der Waals repulsive interactions and the electrostatic energy reduction due to the enhancement of the intralayer SeIn ionic bonding via charge redistribution under load. The present findings are expected to play an instrumental role in design of high-performance solid lubricants and mechanical-electronic nanodevices.

6.
Nanoscale ; 13(11): 5875-5882, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33724280

RESUMO

Theoretical design and experimental fabrication of highly efficient single-atom catalysts (SACs) containing isolated metal atoms monodispersed on appropriate substrates have surged to the forefront of heterogeneous catalysis in recent years. Nevertheless, the instability of SACs, i.e., preferential clustering in chemical reaction processes, dramatically hinders their practical applications. In this paper, using first-principles calculations, we predict that a honeycomb borophene/Al(111) heterostructure can be an ideal candidate to stabilize and enhance the catalysis of many transition metal (TM) SACs via a dual charge transfer mechanism. The Al(111) substrate donates electrons to the pre-covered two-dimensional honeycomb borophene (h-B) to stabilize the latter, and the deposited TM atoms further provide electrons to the h-B, enhancing the covalent binding between the h-B and the Al(111) substrate. Intriguingly, during CO oxidation, the h-B/Al(111) heterostructure can in turn serve as an efficient electron reservoir to accept electrons from or donate electrons to the deposited TM-SACs and the reactants. Such a flexible dual charge transfer mechanism not only facilitates stabilizing the TM-SACs rather than clustering, but also effectively reduces the reaction barriers. Particularly, in contrast to expensive noble metal atoms such as Pd and Pt, low-cost Sc- and Fe-SACs are found to be the most promising SAC candidates that can be stabilized on h-B/Al(111) for O2 activation and CO oxidation, with fairly low reaction barriers (around 0.50-0.65 eV). The present findings may provide important theoretical guidance for the experimental fabrication of highly stable, efficient, and economic SACs stabilized on various heterostructure substrates.

7.
Phys Chem Chem Phys ; 22(20): 11567-11571, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32400823

RESUMO

Searching for half-metals in low dimensional materials is not only of scientific importance, but also has important implications for the realization of spintronic devices on a small scale. In this work, we show theoretically that simple bending can induce spin-splitting in bilayer silicene. For bilayer silicene with Bernal stacking, the monolayer has a long range ferromagnetic spin order and between the two monolayers, the spin orders are opposite, giving rise to an antiferromagnetic configuration for the ground state of the bilayer silicene. Under bending, the antiferromagnetic spin order is retained but the energetic degeneracy of opposite spin states is lifted. Due to the unusual deformation potentials of the conduction band minimum (CBM) and valence band maximum (VBM) as revealed by density-functional theory calculations and density-functional tight-binding calculations, this spin-splitting is nearly proportional to the degree of bending deformation. Consequently, the spin-splitting can be significant and the desired half-metallic state may emerge when the bending increases, which has been verified by direct simulation of the bent bilayer silicene using the generalized Bloch theorem. Our results hint that bilayer silicene may be an excellent candidate for half-metallicity.

8.
J Phys Chem A ; 124(22): 4325-4332, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32390419

RESUMO

Identification of the geometric structures of silver clusters is of great importance in future nanotechnologies due to their superior properties. Nevertheless, some ground-state structures are still in academic debate, partly because the experiments and theoretical calculations are not performed at the same temperatures. For example, silver clusters usually have compact configurations. However, a combined experimental and theoretical study proposed that the most stable structure of Ag13- had a two-coordinated atom. By using the CALYPSO approach for the global minima search followed by first-principles calculations, we discovered that a more compact trilayer Ag13- cluster was the ground state, in accordance with another three works published recently. In addition, its O2 adsorption structure is also energetically favored. By tracing characteristic bond changes in ab initio molecular dynamics (MD) simulations, we confirmed that, compared with other isomers, this trilayer structure and its O2 adsorption structure also had the highest thermal stability. This work emphasized the thermal stability concept in theoretical calculations, which may be a necessary supplement to explain the experimental observations on cluster science.

9.
Phys Chem Chem Phys ; 22(14): 7294-7299, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32211628

RESUMO

Realization of half-metallicity (HM) in low dimensional materials is a fundamental challenge for nano spintronics and a critical component for developing alternative generations of information technology. Using first-principles calculations, we reveal an unconventional deformation potential for zigzag nanoribbons (NRs) of 2D-Xenes. Both the conduction band minimum (CBM) and valence band maximum (VBM) of the edge states have negative deformation potentials. This unique property, combined with the localization and spin-polarization of the edge states, enables us to induce spin-splitting and HM using an inhomogeneous strain pattern, such as simple in-plane bending. Indeed, our calculation using the generalized Bloch theorem reveals the predicted HM in bent zigzag silicene NRs. Furthermore, the magnetic stability of the long range magnetic order for the spin-polarized edge states is maintained well against the bending deformation. These aspects indicate that it is a promising approach to realize HM in low dimensions with the zigzag 2D-Xene NRs.

10.
Phys Rev Lett ; 124(8): 086401, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167367

RESUMO

The existence of Bloch flat bands of electrons provides a facile pathway to obtain exotic quantum phases owing to strong correlation. Despite the established magic angle mechanism for twisted bilayer graphene, understanding of the emergence of flat bands in twisted bilayers of two-dimensional polar crystals remains elusive. Here, we show that due to the polarity between constituent elements in the monolayer, the formation of complete flat bands in twisted bilayers is triggered as long as the twist angle is less than a certain critical value. Using the twisted bilayer of hexagonal boron nitride (hBN) as an example, our simulations using the density-functional tight-binding method reveal that the flat band originates from the stacking-induced decoupling of the highest occupied (lowest unoccupied) states, which predominantly reside in the regions of the moiré superlattice where the anion (cation) atoms in both layers are overlaid. Our findings have important implications for the future search for and study of flat bands in polar materials.

11.
ACS Appl Mater Interfaces ; 11(36): 32887-32894, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31429270

RESUMO

Single-atom catalysts (SACs) are of great scientific and technical importance due to their low cost, high site density, and high specificity to enhance chemical reactions. Nevertheless, a major issue that severely limits the practical exploration of SACs is their instability, i.e., the preference of sintering and clustering over a defect-free substrate during operation. Here, we employ first-principles calculations to investigate how substrate engineering can stabilize SACs by strain-tuning the electronic interactions between the metal and the substrate using two Pd adatoms on a defect-free, single-layer MoS2 as a typical example. It is identified that the Pd2 dimer is prone to dissociate and form highly efficient SACs for CO oxidation due to the enhanced charge transfer and orbital hybridization with the MoS2 substrate under a suitable tensile strain. The straining induces a semiconductive-to-metallic phase transition of the substrate. Moreover, low-cost elements, such as Ag, Ni, Cu, and Cr, can also be stabilized into high-performance SACs for CO oxidation with tunable reaction barriers by straining. The present findings offer a new avenue to inhibit the transition metal atoms from clustering into nanoclusters/particles and provide a clear guidance for the development of highly cost-efficient and stable SACs on defect-free substrates.

12.
Natl Sci Rev ; 6(3): 532-539, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691902

RESUMO

The distribution of dopants significantly influences the properties of semiconductors, yet effective modulation and separation of p-type and n-type dopants in homogeneous materials remain challenging, especially for nanostructures. Employing a bond orbital model with supportive atomistic simulations, we show that axial twisting can substantially modulate the radial distribution of dopants in Si nanowires (NWs) such that dopants of smaller sizes than the host atom prefer atomic sites near the NW core, while dopants of larger sizes are prone to staying adjacent to the NW surface. We attribute such distinct behaviors to the twist-induced inhomogeneous shear strain in NW. With this, our investigation on codoping pairs further reveals that with proper choices of codoping pairs, e.g. B and Sb, n-type and p-type dopants can be well separated along the NW radial dimension. Our findings suggest that twisting may lead to realizations of p-n junction configuration and modulation doping in single-crystalline NWs.

13.
Phys Chem Chem Phys ; 18(36): 24872-9, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27545326

RESUMO

Exploration of the catalytic activity of low-dimensional transition metal (TM) or noble metal catalysts is a vital subject of modern materials science because of their instrumental role in numerous industrial applications. Recent experimental advances have demonstrated the utilization of single atoms on different substrates as effective catalysts, which exhibit amazing catalytic properties such as more efficient catalytic performance and higher selectivity in chemical reactions as compared to their nanostructured counterparts; however, the underlying microscopic mechanisms operative in these single atom catalysts still remain elusive. Based on first-principles calculations, herein, we present a comparative study of the key kinetic rate processes involved in CO oxidation using a monomer or dimer of two representative TMs (Pd and Ni) on defective TiO2(110) substrates (TMn@TiO2(110), n = 1, 2) to elucidate the underlying mechanism of single-atom catalysis. We reveal that the O2 activation rates of the single atom TM catalysts deposited on TiO2(110) are governed cooperatively by the classic spin-selection rule and the well-known frontier orbital theory (or generalized d-band picture) that emphasizes the energy gap between the frontier orbitals of the TM catalysts and O2 molecule. We further illuminate that the subsequent CO oxidation reactions proceed via the Langmuir-Hinshelwood mechanism with contrasting reaction barriers for the Pd monomer and dimer catalysts. These findings not only provide an explanation for existing observations of distinctly different catalytic activities of Pd@TiO2(110) and Pd2@TiO2(110) [Kaden et al., Science, 2009, 326, 826-829] but also shed new insights into future utilization and optimization of single-atom catalysis.

14.
Phys Chem Chem Phys ; 17(45): 30270-8, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26257125

RESUMO

Sub-surface alloying (SSA) can be an effective approach to tuning surface functionalities. Focusing on Rh(111) as a typical substrate for graphene nucleation, we show strong modulation by SSA atoms of both the energetics and kinetics of graphene nucleation simulated by first-principles calculations. Counter-intuitively, when the sub-surface atoms are replaced by more active solute metal elements to the left of Rh in the periodic table, such as the early transition metals (TMs), Ru and Tc, the binding between a C atom and the substrate is weakened and two C atoms favor dimerization. Alternatively, when the alloying elements are the late TMs to the right of Rh, such as the relatively inert Pd and Ag, the repulsion between the two C atoms is enhanced. Such distinct results can be well addressed by the delicately modulated activities of the surface host atoms in the framework of the d-band theory. More specifically, we establish a very simple selection rule for optimizing the metal substrate for high quality graphene growth: the introduction of an early (late) solute TM in the SSA lowers (raises) the d-band center and the activity of the top-most host metal atoms, weakening (strengthening) the C-substrate binding, meanwhile both energetically and kinetically facilitating (hindering) the graphene nucleation, and simultaneously promoting (suppressing) the orientation disordering the graphene domains. Importantly, our preliminary theoretical results also show that such a simple rule is also proposed to be operative for graphene growth on the widely invoked Cu(111) catalytic substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA