Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
2.
Nat Commun ; 13(1): 6548, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319643

RESUMO

Aberrant expression of the Forkhead box transcription factor, FOXQ1, is a prevalent mechanism of epithelial-mesenchymal transition (EMT) and metastasis in multiple carcinoma types. However, it remains unknown how FOXQ1 regulates gene expression. Here, we report that FOXQ1 initiates EMT by recruiting the MLL/KMT2 histone methyltransferase complex as a transcriptional coactivator. We first establish that FOXQ1 promoter recognition precedes MLL complex assembly and histone-3 lysine-4 trimethylation within the promoter regions of critical genes in the EMT program. Mechanistically, we identify that the Forkhead box in FOXQ1 functions as a transactivation domain directly binding the MLL core complex subunit RbBP5 without interrupting FOXQ1 DNA binding activity. Moreover, genetic disruption of the FOXQ1-RbBP5 interaction or pharmacologic targeting of KMT2/MLL recruitment inhibits FOXQ1-dependent gene expression, EMT, and in vivo tumor progression. Our study suggests that targeting the FOXQ1-MLL epigenetic axis could be a promising strategy to combat triple-negative breast cancer metastatic progression.


Assuntos
Neoplasias da Mama , Segunda Neoplasia Primária , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Segunda Neoplasia Primária/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Melanoma Maligno Cutâneo
4.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948275

RESUMO

L-alpha glycerylphosphorylcholine (GPC), a nutritional supplement, has been demonstrated to improve neurological function. However, a new study suggests that GPC supplementation increases incident stroke risk thus its potential adverse effects warrant further investigation. Here we show that GPC promotes atherosclerosis in hyperlipidemic Apoe-/- mice. GPC can be metabolized to trimethylamine N-oxide, a pro-atherogenic agent, suggesting a potential molecular mechanism underlying the observed atherosclerosis progression. GPC supplementation shifted the gut microbial community structure, characterized by increased abundance of Parabacteroides, Ruminococcus, and Bacteroides and decreased abundance of Akkermansia, Lactobacillus, and Roseburia, as determined by 16S rRNA gene sequencing. These data are consistent with a reduction in fecal and cecal short chain fatty acids in GPC-fed mice. Additionally, we found that GPC supplementation led to an increased relative abundance of choline trimethylamine lyase (cutC)-encoding bacteria via qPCR. Interrogation of host inflammatory signaling showed that GPC supplementation increased expression of the proinflammatory effectors CXCL13 and TIMP-1 and activated NF-κB and MAPK signaling pathways in human coronary artery endothelial cells. Finally, targeted and untargeted metabolomic analysis of murine plasma revealed additional metabolites associated with GPC supplementation and atherosclerosis. In summary, our results show GPC promotes atherosclerosis through multiple mechanisms and that caution should be applied when using GPC as a nutritional supplement.


Assuntos
Aterosclerose/etiologia , Glicerilfosforilcolina/efeitos adversos , Glicerilfosforilcolina/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Linhagem Celular , Suplementos Nutricionais/efeitos adversos , Células Endoteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Glicerilfosforilcolina/farmacologia , Humanos , Masculino , Metilaminas/efeitos adversos , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
5.
J Atten Disord ; 25(3): 377-388, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-30259777

RESUMO

Objective: This study aimed to explore alterations of seed-based functional connectivity (FC) in dorsal attention network (DAN), ventral attention network (VAN), and default mode network (DMN) in ADHD children. Method: A voxel-based comparison of FC maps between 46 drug-naïve children with ADHD and 31 healthy controls (HCs) and correlation analysis between connectivity features and behavior were performed. Results: Compared with the HCs, children with ADHD were characterized by hyperconnectivity between DAN and regions of DMN and by hyperconnectivity between DMN and a set of regions involved in somatosensory, visual, and auditory cortices. No significant group different FC was found between VAN and the whole brain. Higher FC between DMN and somatosensory, visual, and auditory cortex was associated with better performance in attention and executive function. Conclusion: The dysregulation of networks in children with ADHD not only involves the DAN and DMN but also the somatosensory, motor, visual, and auditory networks.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Preparações Farmacêuticas , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem
6.
Blood Cells Mol Dis ; 87: 102533, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33352376

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). The article has been retracted at the request of the editor. The journal was informed by Dr Xiangmin Xu and Dr Yongzhong Zhao that they were not involved in the study or research and that the article was submitted without their knowledge. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. All authors were informed of the article retraction however Dr Li and Dr Zeng did not respond to the enquiries.


Assuntos
Células Eritroides/citologia , Células Precursoras Eritroides/citologia , Eritropoese , Fatores de Transcrição Kruppel-Like/genética , alfa-Globinas/genética , Linhagem Celular , Epigênese Genética , Células Eritroides/metabolismo , Células Precursoras Eritroides/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional
7.
J Lab Precis Med ; 52020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32587943

RESUMO

Host-microbes interaction plays a crucial role in cardiovascular disease (CVD) pathogenesis, mechanistically via metaorganismal pathways. The trimethylamine N-oxide (TMAO) metaorganismal pathway is the most deeply investigated one, which comprises trimethylamine precursors, such as choline, trimethylamine lyase, trimethylamine, host liver FMO3, TMAO, and downstream effectors involving unfolded protein response (UPR), NF-κB and NLRP3 inflammasome. Accumulating data from clinical investigations of CVD patient cohorts and rodent models have supported the critical role of this metaorganismal pathway in the pathogenesis of CVD. We summarize an array of significant animal studies especially for arthrosclerosis with an emphasis on downstream molecular effectors of this metaorganismal pathway. We highlight clinical investigations of the prognostic value of plasma TMAO levels in predicting prospective risk for future major adverse cardiac events (MACE) indicated by composite end points of myocardial infarction (MI), stroke, heart failure (HF), other ischemic cardiovascular events, or death. Further, we discuss the latest advances of preclinical models targeting the gut microbiota trimethylamine lyase of the TMAO metaorganismal pathway for CVD intervention, as well as the catalog of gut microbiota TMA lyase genes and microbes in the human gut as the prerequisite for potential clinical intervention. In-depth characterization of TMAO metaorganismal pathway holds great promise for CVD clinical metagenomics, diagnostics and therapeutics.

8.
Proc Natl Acad Sci U S A ; 117(23): 12868-12876, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457162

RESUMO

Fine-resolution differentiation trajectories of adult human hematopoietic stem cells (HSCs) involved in the generation of red cells is critical for understanding dynamic developmental changes that accompany human erythropoiesis. Using single-cell RNA sequencing (scRNA-seq) of primary human terminal erythroid cells (CD34-CD235a+) isolated directly from adult bone marrow (BM) and umbilical cord blood (UCB), we documented the transcriptome of terminally differentiated human erythroblasts at unprecedented resolution. The insights enabled us to distinguish polychromatic erythroblasts (PolyEs) at the early and late stages of development as well as the different development stages of orthochromatic erythroblasts (OrthoEs). We further identified a set of putative regulators of terminal erythroid differentiation and functionally validated three of the identified genes, AKAP8L, TERF2IP, and RNF10, by monitoring cell differentiation and apoptosis. We documented that knockdown of AKAP8L suppressed the commitment of HSCs to erythroid lineage and cell proliferation and delayed differentiation of colony-forming unit-erythroid (CFU-E) to the proerythroblast stage (ProE). In contrast, the knockdown of TERF2IP and RNF10 delayed differentiation of PolyE to OrthoE stage. Taken together, the convergence and divergence of the transcriptional continuums at single-cell resolution underscore the transcriptional regulatory networks that underlie human fetal and adult terminal erythroid differentiation.


Assuntos
Diferenciação Celular/genética , Eritroblastos/fisiologia , Eritropoese/genética , Adulto , Apoptose/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sangue Fetal/citologia , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Família Multigênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA-Seq , Complexo Shelterina , Análise de Célula Única , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Transcrição Gênica
9.
Adv Exp Med Biol ; 1238: 11-22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32323177

RESUMO

The gastrointestinal (GI) tract is inhabited by a diverse array of microbes, which play crucial roles in health and disease. Dysbiosis of microbiota has been tightly linked to gastrointestinal inflammatory and malignant diseases. Here we highlight the role of Helicobacter pylori alongside gastric microbiota associated with gastric inflammation and cancer. We summarize the taxonomic and functional aspects of intestinal microbiota linked to inflammatory bowel diseases (IBD), irritable bowel syndrome (IBS), and colorectal cancer in clinical investigations. We also discuss microbiome-related animal models. Nevertheless, there are tremendous opportunities to reveal the causality of microbiota in health and disease and detailed microbe-host interaction mechanisms by which how dysbiosis is causally linked to inflammatory disease and cancer, in turn, potentializing clinical interventions with a personalized high efficacy.


Assuntos
Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Disbiose/microbiologia , Disbiose/patologia , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Animais , Helicobacter pylori/patogenicidade , Humanos , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/patologia
10.
Curr Opin Cardiol ; 35(3): 207-218, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32068612

RESUMO

PURPOSE OF REVIEW: This review aims to highlight the association between gut microbiome and cardiovascular disease (CVD) with emphasis on the possible molecular mechanisms by which how gut microbiome contributes to CVD. RECENT FINDINGS: Increasingly, the roles of gut microbiome in cardiovascular health and disease have gained much attention. Most of the investigations focus on how the gut dysbiosis contributes to CVD risk factors and which gut microbial-derived metabolites mediate such effects. SUMMARY: In this review, we discuss the molecular mechanisms of gut microbiome contributing to CVD, which include gut microbes translocalization to aortic artery because of gut barrier defect to initiate inflammation and microbial-derived metabolites inducing inflammation-signaling pathway and renal insufficiency. Specifically, we categorize beneficial and deleterious microbial-derived metabolites in cardiovascular health. We also summarize recent findings in the gut microbiome modulation of drug efficacy in treatment of CVD and the microbiome mechanisms by which how physical exercise ameliorates cardiovascular health. Gut microbiome has become an essential component of cardiovascular research and a crucial consideration factor in cardiovascular health and disease.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Sistema Cardiovascular , Microbioma Gastrointestinal , Disbiose , Humanos , Inflamação
11.
Mol Ther Oncolytics ; 14: 172-178, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31236441

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide, and liver metastasis presents a major cause of CRC-associated death. Extensive genomic analysis has provided valuable insight into the pathogenesis and progression of CRC; however, a comprehensive proteogenomic characterization of CRC liver metastasis (CLM) has yet to be reported. Here, we analyzed the proteomes of 44 paired normal colorectal tissues and CRC tissues with or without liver metastasis, as well as analyzed genomics of CRC characterized previously by The Cancer Genome Atlas (TCGA) to conduct integrated proteogenomic analyses. We identified a total of 2,170 significantly deregulated proteins associated with CLM, 14.88% of which were involved in metabolic pathways. The mutated peptide number was found to have potential prognosis value, and somatic variants revealed two metabolism-related genes UQCR5 and FDFT1 that frequently mutated only in the liver metastatic cohort and displayed dysregulated protein abundance with biological function and clinical significance in CLM. Proteogenomic characterization and integrative and comparative genomic analysis provides functional context and prognostic value to annotate genomic abnormalities and affords a new paradigm for understanding human colon and rectal cancer liver metastasis.

12.
Protein Cell ; 9(5): 416-431, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29725935

RESUMO

Trillions of microbes inhabit the human gut, not only providing nutrients and energy to the host from the ingested food, but also producing metabolic bioactive signaling molecules to maintain health and elicit disease, such as cardiovascular disease (CVD). CVD is the leading cause of mortality worldwide. In this review, we presented gut microbiota derived metabolites involved in cardiovascular health and disease, including trimethylamine-N-oxide (TMAO), uremic toxins, short chain fatty acids (SCFAs), phytoestrogens, anthocyanins, bile acids and lipopolysaccharide. These gut microbiota derived metabolites play critical roles in maintaining a healthy cardiovascular function, and if dysregulated, potentially causally linked to CVD. A better understanding of the function and dynamics of gut microbiota derived metabolites holds great promise toward mechanistic predicative CVD biomarker discoveries and precise interventions.


Assuntos
Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/patologia , Microbioma Gastrointestinal , Metaboloma , Doenças Cardiovasculares/metabolismo , Humanos
13.
Mol Neurodegener ; 12(1): 82, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29110684

RESUMO

BACKGROUND: Oligodendrocytes (OLs) and myelin are critical for normal brain function and have been implicated in neurodegeneration. Several lines of evidence including neuroimaging and neuropathological data suggest that Alzheimer's disease (AD) may be associated with dysmyelination and a breakdown of OL-axon communication. METHODS: In order to understand this phenomenon on a molecular level, we systematically interrogated OL-enriched gene networks constructed from large-scale genomic, transcriptomic and proteomic data obtained from human AD postmortem brain samples. We then validated these networks using gene expression datasets generated from mice with ablation of major gene expression nodes identified in our AD-dysregulated networks. RESULTS: The robust OL gene coexpression networks that we identified were highly enriched for genes associated with AD risk variants, such as BIN1 and demonstrated strong dysregulation in AD. We further corroborated the structure of the corresponding gene causal networks using datasets generated from the brain of mice with ablation of key network drivers, such as UGT8, CNP and PLP1, which were identified from human AD brain data. Further, we found that mice with genetic ablations of Cnp mimicked aspects of myelin and mitochondrial gene expression dysregulation seen in brain samples from patients with AD, including decreased protein expression of BIN1 and GOT2. CONCLUSIONS: This study provides a molecular blueprint of the dysregulation of gene expression networks of OL in AD and identifies key OL- and myelination-related genes and networks that are highly associated with AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Modelos Neurológicos , Bainha de Mielina/genética , Bainha de Mielina/patologia , Oligodendroglia/patologia , Animais , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Camundongos
14.
Oncotarget ; 8(40): 66769-66783, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28977995

RESUMO

The genomic features and arising mechanisms of coding cancer somatic gene fusions (CSGFs) largely remain elusive. In this study, we show the gene origin stratification pattern of CSGF partners that fusion partners in human cancers are significantly enriched for genes with the gene age ofEuteleostomes and with the gene family age of Bilateria. GC skew (a measurement of G, C nucleotide content bias, (G-C)/(G+C)) is a useful measurement to indicate the DNA leading strand, lagging strand, replication origin, and replication terminal and DNA-RNA R-loop formation. We find that GC skew bias at the 5 prime (5') but not the 3 prime (3') partners of CSGFs, coincident with the polarity feature of gene expression breadth that the 5' partners are more ubiquitous while the 3' fusion partners are more tissue specific in general. We reveal distinct length and composition distributions of 5' and 3' of CSGFs, including sequence features corresponded to the 5' untranslated regions (UTRs), 3' UTRs, and the N-terminal sequences of the encoded proteins. Oncogenic somatic gene fusions are most enriched for the 5' and 3' genes' somatic amplification alongside a substantial proportion of other types of combinations. At the function level, 5' partners of CSGFs appear more likely to be tumour suppressor genes while many 3' partners appear to be proto-oncogene. Such distinct polarities of CSGFs at the evolutionary, structural, genomic and functional levels indicate the heterogeneous arsing mechanisms of CSGFs including R-loops and suggest potential novel targeted therapeutics specific to CSGF functional categories.

15.
Nat Genet ; 49(10): 1437-1449, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28892060

RESUMO

A major challenge in inflammatory bowel disease (IBD) is the integration of diverse IBD data sets to construct predictive models of IBD. We present a predictive model of the immune component of IBD that informs causal relationships among loci previously linked to IBD through genome-wide association studies (GWAS) using functional and regulatory annotations that relate to the cells, tissues, and pathophysiology of IBD. Our model consists of individual networks constructed using molecular data generated from intestinal samples isolated from three populations of patients with IBD at different stages of disease. We performed key driver analysis to identify genes predicted to modulate network regulatory states associated with IBD, prioritizing and prospectively validating 12 of the top key drivers experimentally. This validated key driver set not only introduces new regulators of processes central to IBD but also provides the integrated circuits of genetic, molecular, and clinical traits that can be directly queried to interrogate and refine the regulatory framework defining IBD.


Assuntos
Redes Reguladoras de Genes , Genes Reguladores , Genômica/métodos , Doenças Inflamatórias Intestinais/genética , Modelos Genéticos , Transferência Adotiva , Animais , Causalidade , Células Cultivadas , Colite/induzido quimicamente , Colite/genética , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Subpopulações de Linfócitos T/transplante , Transcriptoma
16.
FEBS Lett ; 590(24): 4519-4530, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27859223

RESUMO

Low serum selenium or selenoprotein P (SePP) levels have been repetitively observed in severe sepsis. The role of SePP in sepsis is incompletely characterized. To test the hypothesis that lipopolysaccharide (LPS) interacts with SePP, we investigated the interaction between LPS and the histidine-rich (His-rich) regions of SePP. We demonstrate that both purified SePP and synthetic peptides corresponding to the His-rich motifs neutralized LPS. In addition, we used a hepatocyte model to study the fate of SePP in response to LPS or endoplasmic reticulum (ER) stress. Our findings indicate that ER stress increases the cellular level of SePP and promotes its nuclear localization.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Selenoproteína P/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Glicosilação/efeitos dos fármacos , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Selenoproteína P/agonistas , Selenoproteína P/antagonistas & inibidores , Selenoproteína P/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Alinhamento de Sequência , Tapsigargina/farmacologia , Tunicamicina/farmacologia , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
17.
Oncotarget ; 7(43): 69592-69605, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27612429

RESUMO

Aminoacyl tRNA synthetases (ARSs) are a class of enzymes with well-conserved housekeeping functions in cellular translation. Recent evidence suggests that ARS genes may participate in a wide array of cellular processes, and may contribute to the pathology of autoimmune disease, cancer, and other diseases. Several studies have suggested a role for the glutamyl prolyl tRNA synthetase (EPRS) in breast cancers, although none has identified any underlying mechanism about how EPRS contributes to carcinogenesis. In this study, we identified EPRS as upregulated in estrogen receptor positive (ER+) human breast tumors in the TCGA and METABRIC cohorts, with copy number gains in nearly 50% of samples in both datasets. EPRS expression is associated with reduced overall survival in patients with ER+ tumors in TCGA and METABRIC datasets. EPRS expression was also associated with reduced distant relapse-free survival in patients treated with adjuvant tamoxifen monotherapy for five years, and EPRS-correlated genes were highly enriched for genes predictive of a poor response to tamoxifen. We demonstrated the necessity of EPRS for proliferation of tamoxifen-resistant ER+ breast cancer, but not ER- breast cancer cells. Transcriptomic profiling showed that EPRS regulated cell cycle and estrogen response genes. Finally, we constructed a causal gene network based on over 2500 ER+ breast tumor samples to build up an EPRS-estrogen signaling pathway. EPRS and its regulated estrogenic gene network may offer a promising alternative approach to target ER+ breast cancers that are refractory to current anti-estrogens.


Assuntos
Aminoacil-tRNA Sintetases/genética , Neoplasias da Mama/genética , Proliferação de Células/genética , Receptores de Estrogênio/genética , Aminoacil-tRNA Sintetases/metabolismo , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Prognóstico , Interferência de RNA , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/uso terapêutico
18.
Brief Bioinform ; 17(6): 1044-1059, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27559151

RESUMO

The Cancer Genome Atlas project has generated multi-dimensional and highly integrated genomic data from a large number of patient samples with detailed clinical records across many cancer types, but it remains unclear how to best integrate the massive amount of genomic data into clinical practice. We report here our methodology to build a multi-dimensional subnetwork atlas for cancer prognosis to better investigate the potential impact of multiple genetic and epigenetic (gene expression, copy number variation, microRNA expression and DNA methylation) changes on the molecular states of networks that in turn affects complex cancer survivorship. We uncover an average of 38 novel subnetworks in the protein-protein interaction network that correlate with prognosis across four prominent cancer types. The clinical utility of these subnetwork biomarkers was further evaluated by prognostic impact evaluation, functional enrichment analysis, drug target annotation, tumor stratification and independent validation. Some pathways including the dynactin, cohesion and pyruvate dehydrogenase-related subnetworks are identified as promising new targets for therapy in specific cancer types. In conclusion, this integrative analysis of existing protein interactome and cancer genomics data allows us to systematically dissect the molecular mechanisms that underlie unexpected outcomes for cancer, which could be used to better understand and predict clinical outcomes, optimize treatment and to provide new opportunities for developing therapeutics related to the subnetworks identified.


Assuntos
Neoplasias , Variações do Número de Cópias de DNA , Metilação de DNA , Genômica , Humanos , Prognóstico
19.
Mol Biosyst ; 12(8): 2318-41, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27303926

RESUMO

It has been well-recognized that inflammation alongside tissue repair and damage maintaining tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the accomplishment of having captured the most critical inflammation-involved molecules, genetic susceptibilities, epigenetic factors, and environmental factors, our schemata on the role of inflammation in complex diseases remain largely patchy, in part due to the success of reductionism in terms of research methodology per se. Omics data alongside the advances in data integration technologies have enabled reconstruction of molecular and genetic inflammation networks which shed light on the underlying pathophysiology of complex diseases or clinical conditions. Given the proven beneficial role of anti-inflammation in coronary heart disease as well as other complex diseases and immunotherapy as a revolutionary transition in oncology, it becomes timely to review our current understanding of the molecular and genetic inflammation networks underlying major human diseases. In this review, we first briefly discuss the complexity of infectious diseases and then highlight recently uncovered molecular and genetic inflammation networks in other major human diseases including obesity, type II diabetes, coronary heart disease, late onset Alzheimer's disease, Parkinson's disease, and sporadic cancer. The commonality and specificity of these molecular networks are addressed in the context of genetics based on genome-wide association study (GWAS). The double-sword role of inflammation, such as how the aberrant type 1 and/or type 2 immunity leads to chronic and severe clinical conditions, remains open in terms of the inflammasome and the core inflammatome network features. Increasingly available large Omics and clinical data in tandem with systems biology approaches have offered an exciting yet challenging opportunity toward reconstruction of more comprehensive and dynamic molecular and genetic inflammation networks, which hold great promise in transiting network snapshots to video-style multi-scale interplays of disease mechanisms, in turn leading to effective clinical intervention.


Assuntos
Redes Reguladoras de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Inflamação/etiologia , Inflamação/metabolismo , Animais , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Camundongos
20.
Nat Commun ; 7: 10960, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26971877

RESUMO

The signalling pathways operational in quiescent, post-development vasculature remain enigmatic. Here we show that unlike neovascularization, endothelial Akt signalling in established vasculature is crucial not for endothelial cell (EC) survival, but for sustained interactions with pericytes and vascular smooth muscle cells (VSMCs) regulating vascular stability and function. Inducible endothelial-specific Akt1 deletion in adult global Akt2KO mice triggers progressive VSMC apoptosis. In hearts, this causes a loss of arteries and arterioles and, despite a high capillary density, diminished vascular patency and severe cardiac dysfunction. Similarly, endothelial Akt deletion induces retinal VSMC loss and basement membrane deterioration resulting in vascular regression and retinal atrophy. Mechanistically, the Akt/mTOR axis controls endothelial Jagged1 expression and, thereby, Notch signalling regulating VSMC maintenance. Jagged1 peptide treatment of Akt1ΔEC;Akt2KO mice and Jagged1 re-expression in Akt-deficient endothelium restores VSMC coverage. Thus, sustained endothelial Akt1/2 signalling is critical in maintaining vascular stability and homeostasis, thereby preserving tissue and organ function.


Assuntos
Vasos Sanguíneos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Células Endoteliais/metabolismo , Endotélio/metabolismo , Homeostase/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas c-akt/genética , Angiografia , Animais , Materiais Biocompatíveis , Barreira Hematoencefálica/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Colágeno , Vasos Coronários/metabolismo , Combinação de Medicamentos , Ecocardiografia , Olho/irrigação sanguínea , Imunofluorescência , Regulação da Expressão Gênica , Coração , Células Endoteliais da Veia Umbilical Humana , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Laminina , Pulmão/irrigação sanguínea , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso , Pericitos , Proteoglicanas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina , Vasos Retinianos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Serrate-Jagged , Transdução de Sinais/genética , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA