Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760718

RESUMO

Pseudomonas aeruginosa with difficult-to-treat resistance has been designated as an urgent or serious threat by the CDC in the United States; therefore, novel antibacterial drugs and combination strategies are urgently needed. The sensor kinase RoxS is necessary for the aerobic growth of Pseudomonas aeruginosa. This study aimed to screen candidate RoxS inhibitors and evaluate their efficacy in treating multi-drug-resistant and extensively drug-resistant Pseudomonas aeruginosa in combination with meropenem and amikacin to identify promising combination strategies. RoxS protein structures were constructed using homology modeling and potential RoxS inhibitors, including Ezetimibe, Deferasirox, and Posaconazole, were screened from the FDA-approved ZINC drug database using molecular docking and molecular dynamics simulations. MIC and checkerboard assays were used to determine the in vitro antimicrobial efficacy of the three drugs in combination with antibiotics. The results of in vitro experiments showed an additive effect of 100 µg/mL Deferasirox or 16 µg/mL Posaconazole in combination with meropenem and a synergistic effect of 1.5 µg/mL Deferasirox and amikacin. In summary, these three drugs are potential inhibitors of RoxS, and their combination with meropenem or amikacin is expected to reverse the resistance of P. aeruginosa, providing new combination strategies for the treatment of clinically difficult-to-treat Pseudomonas aeruginosa.

2.
ACS Omega ; 7(38): 34621-34631, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188325

RESUMO

Human urate transporter 1 (hURAT1) is the most pivotal therapeutic target for hyperuricemia. Due to a lack of crystal structure information, the atomic structure of URAT1 is not clearly understood. In this study, a multiple sequence alignment was performed, and K393, a positively charged residue in transmembrane domain (TMD) 8, was observed to be highly conserved in organic anion transporters (OATs). K393 was substituted with a positively, negatively, and neutrally charged amino acid via site-directed mutagenesis and then used to transfect HEK293 cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) analyses indicated that mutants of K393 showed mRNA and protein expression levels similar to those in the WT group. The nonpositively charged mutants K393A, K393D, and K393E eliminated 70-80% of 14C-uric acid transport capacity, while the K393H mutant showed slight and the K393R mutant showed no reduced transport capacity compared with the WT group. Binding assays indicated that K393A, K393D, and K393E conferred lowered uric acid binding affinity. As indicated by the K m and V max values obtained from saturation kinetic experiments, K393A, K393D, and K393E showed increased K m values, but K393R and K393H showed K m values similar to those in the WT group. K393 also contributed to a high affinity for benzbromarone (BM) interaction. The inhibitory effects of BM were partly abolished in K393 mutants, with increased IC50 values compared with the WT group. BM also exhibited weaker inhibitory effects on 14C-uric acid binding in K393R and K393H mutants. In an outward homology model of URAT1, K393 was located in the inner part of the transport tunnel, and further molecular docking analysis indicated that uric acid and BM showed possible hydrogen bonds with K393. Mutants K393R and K393H showed possible interactions with uric acid, and positive charges confer high affinity for uric acid as revealed by their surface electrostatic potential. In conclusion, our data provide evidence that K393 is an important residue for the recognition of uric acid or inhibitors by URAT1.

4.
Acta Pharmacol Sin ; 43(1): 121-132, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33767379

RESUMO

Urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) are important targets for the development of uric acid-lowering drugs. We previously showed that the flexible linkers of URAT1 inhibitors could enhance their potency. In this study we designed and synthesized CDER167, a novel RDEA3710 analogue, by introducing a linker (methylene) between the naphthalene and pyridine rings to increase flexibility, and characterized its pharmacological and pharmacokinetics properties in vitro and in vivo. We showed that CDER167 exerted dual-target inhibitory effects on both URAT1 and GLUT9: CDER167 concentration-dependently inhibited the uptake of [14C]-uric acid in URAT1-expressing HEK293 cells with an IC50 value of 2.08 ± 0.31 µM, which was similar to that of RDEA3170 (its IC50 value was 1.47 ± 0.23 µM). Using site-directed mutagenesis, we demonstrated that CDER167 might interact with URAT1 at S35 and F365. In GLUT9-expressing HEK293T cells, CDER167 concentration-dependently inhibited GLUT9 with an IC50 value of 91.55 ± 15.28 µM, whereas RDEA3170 at 100 µM had no effect on GLUT9. In potassium oxonate-induced hyperuricemic mice, oral administration of CDER167 (10 mg·kg-1 · d-1) for 7 days was more effective in lowering uric acid in blood and significantly promoted uric acid excretion in urine as compared with RDEA3170 (20 mg·kg-1 · d-1) administered. The animal experiment proved the safety of CDER167. In addition, CDER167 displayed better bioavailability than RDEA3170, better metabolic stability and no hERG toxicity at 100 µM. These results suggest that CDER167 deserves further investigation as a candidate antihyperuricemic drug targeting URAT1 and GLUT9.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose , Hiperuricemia , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Humanos , Células Cultivadas , Relação Dose-Resposta a Droga , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Células HEK293 , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Estrutura Molecular , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade
5.
Adv Healthc Mater ; 10(19): e2100770, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34190424

RESUMO

The antioxidant defense system in malignant cells, which involves antioxidant enzymes and antioxidant molecules, is an innate barrier to photodynamic therapy (PDT). Because of the complexity of the endogenous antioxidant mechanisms of these cells, simply inhibiting individual antioxidant pathways has a limited effect on improving the lethality of ROS. To enhance the efficacy of PDT for tumor treatment, a versatile nanoparticle (NP)-based drug is developed, which the authors call PZB NP, containing the glutathione inhibitor l-buthionine sulfoximine (BSO) and the heme oxygenase 1 (HO-1) inhibitor protoporphyrin zinc(II) (ZnPP) to suppress the innate antioxidant defense system of cancer cells in a two-pronged manner. BSO reduces intracellular glutathione levels to minimize ROS elimination and protein protection during PDT, and ZnPP inhibits the ROS-stimulated upregulation of the antioxidant HO-1, thus preventing ROS removal by cells after PDT. Thus, BSO and ZnPP synergistically suppress the antioxidant defense systems of cancer cells both during and after protoporphyrin-IX-mediated PDT in a two-pronged manner, resulting in tumor cell death through excess oxidative pressure. The results demonstrate that the construction of nanodrugs having dual antioxidation defense suppression properties is a promising route for the development of highly efficient ROS-based therapies.


Assuntos
Glutationa , Fotoquimioterapia , Antioxidantes/farmacologia , Butionina Sulfoximina , Heme Oxigenase-1
6.
ACS Omega ; 5(51): 33421-33432, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403304

RESUMO

Background: Human urate transporter 1 (hURAT1) is the most pivotal therapeutic target for treating hyperuricemia. However, the molecular interactions between uric acid and URAT1 are still unknown due to lack of structural details. Methods: In the present study, several methods (homology modeling, sequence alignment, docking, and mutagenesis) were used to explain the atomistic mechanisms of uric acid transport of hURAT1. Results: Residues W357-F365 in the TMD7 and P484-R487 in the TMD11 present in the hURAT1 have unique roles in both binding to the uric acid and causing subsequent structural changes. These residues, located in the transport tunnel, were found to be related to the structural changes, as demonstrated by the reduced V max values and an unaltered expression of protein level. In addition, W357, G361, T363, F365, and R487 residues may confer high affinity for binding to uric acid. An outward-open homology model of hURAT1 revealed a crucial role for these two domains in the conformational changes of hURAT1. F241 and H245 in TMD5, and R477 and R487 in TMD11 may confer high affinity for uric acid, and as the docking analysis suggests, they may also enhance the affinity for the inhibitors. R477 relation to the structural changes was demonstrated by the V max values of the mutants and the contribution of positive charge to the uric acid selectivity. Conclusions: W357-F365 in TMD7, P484-R487 in TMD11, and residues F241, H245, and R477 were found to be critical for the translocation and recognition of uric acid.

7.
J Appl Toxicol ; 39(8): 1233-1244, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31066085

RESUMO

Doxorubicin (DOX) is a highly active anticancer drug with severe cytotoxicity, which is strongly associated with oxidative stress. Carvedilol (CAR), used as its racemate with S-CAR and R-CAR (1:1), has been previously reported to ameliorate the DOX-induced cytotoxicity. However, the main contributor from CAR of its protective effects has not been clear. Therefore, in this study, we aimed to investigate further the different effects of CAR enantiomers on DOX-induced cytotoxicity in human umbilical vein endothelial cells and rats, respectively. Results indicated that S-CAR could significantly attenuate DOX-induced cell death, apoptotic morphological changes, decrease the mitochondrial membrane potential and oxidative stress responses by increasing the superoxide dismutase and catalase activities, and decreasing malondialdehyde contents and reactive oxygen species levels via the phosphoinositide 3-kinase/AKT/endothelial nitric oxide synthase pathway in vitro. Consistent with the in vitro study, the protective effects of S-CAR on the myocardial tissues and hemodynamics were also detected in rats suffering because of DOX treatment. With the obtained results, we can first conclude that S-CAR provides superior protection to injury induced by DOX relative to that of racemic CAR and R-CAR.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Carvedilol/farmacologia , Doxorrubicina/toxicidade , Animais , Antioxidantes/metabolismo , Peso Corporal/efeitos dos fármacos , Catalase/sangue , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hemodinâmica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/sangue , Superóxido Dismutase/sangue , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA