RESUMO
Background: Adolescent idiopathic scoliosis (AIS) is a prevalent spinal disorder that can potentially influence bone mineral density (BMD), thereby increasing the susceptibility to osteoporosis and fractures. Early identification of reduced bone mass in AIS patients is crucial for clinicians to develop effective preventive strategies against fractures. This study aims to elucidate the correlation between BMD, as measured by quantitative computed tomography (QCT), and various clinical parameters in AIS, including the Cobb angle, vertebral rotation, and the Risser sign. By revealing the potential influences of these factors on BMD, our findings aim to assist clinicians in making informed and timely decisions regarding AIS management, particularly in situations where QCT is unavailable. Methods: A cross-sectional study was conducted on 129 adolescents with AIS who were enrolled at The Third People's Hospital of Chengdu, Sichuan, China, between 2021 and 2023. QCT was employed to assess BMD and vertebral rotation. The Cobb angle and Risser sign were determined through radiographic evaluation, while anthropometric and biochemical data were also collected. Statistical analyses, including Pearson and Spearman rank correlation and regression models, were used to investigate the associations between BMD and clinical measures. Results: A significant negative correlation was found between BMD and Cobb angle (coefficient =-0.663; P<0.001), as well as between BMD and vertebral rotation angle (coefficient =-0.442; P<0.001) in patients with AIS. BMD was positively correlated with increased height (coefficient =0.355; P<0.001) and BMI (coefficient =0.199; P=0.02). A significant association was detected between BMD and the Risser sign (P=0.002). No significant sex-based differences in BMD were observed (P=0.052). No significant correlations were observed between BMD and levels of potassium (K), calcium (Ca), inorganic phosphate (P), and iron (Fe) (P>0.05 all). The binary logistic regression analysis identified Cobb angle as a risk factor of lower BMD presence in AIS patients (coefficient =0.072; OR=1.075; P<0.001). Furthermore, the receiver operating characteristic (ROC) analysis of the combined model for predicting low BMD in AIS patients yielded an area under the curve (AUC) value of 0.900, with an optimal threshold determined as 0.398. The sensitivity and specificity were calculated as 0.816 and 0.900, respectively, indicating a robust predictive capacity. Conclusions: This study highlights the significant inverse correlation observed between BMD measured by QCT and both Cobb angle and vertebral rotation angle in patients with AIS. Furthermore, a notable variation in BMD was found across different Risser sign categories, with BMD values generally increasing as Risser sign levels increased. Additionally, our findings indicate that Cobb angle serves as a risk factor for low BMD presence. Moreover, a combined model was developed to predict the likelihood of low BMD occurrence in AIS patients.
RESUMO
BACKGROUND: A consensus on normal atrial deformation measurements by feature-tracking cardiac MRI remained absent. PURPOSE: Provide reference ranges for atrial strain parameters in normal subjects, evaluating the influence of field strength and analysis software on the measurements. STUDY TYPE: Meta-analysis. POPULATION: 2708 subjects from 42 studies undergoing cardiac MRI. ASSESSMENT: A systematic search was conducted from database (PubMed, Web of Science, ScienceDirect, and EMBASE) inception through August 2023. The random-effects model was used to pool the means of biatrial strain parameters. Heterogeneity and clinical variable effects were assessed. Strain measurements among different field strengths and analysis software were compared. STATISTICAL TESTS: The inverse-variance method, Cochrane Q statistic, and I2 value, meta-regression analysis, and ANOVA were used; P < 0.05 was considered statistically significant. RESULTS: The pooled means of left atrial (LA) total strain (εs), passive strain (εe), and active strain (εa) were 37.46%, 22.73%, and 16.24%, respectively, and the pooled means of LA total strain rate (SRs), passive strain rate (SRe), and active strain rate (SRa) were 1.66, -1.95, and -1.83, indicating significant heterogeneity. The pooled means of right atrial (RA) εs, εe, and εa were 44.87%, 26.05%, and 18.83%. RA SRs, SRe, and SRa were 1.66, -1.95, and -1.83, respectively. The meta-regression identified age as significantly associated with LA εs, εe and SRe, field strength was associated with LA SRa (all P < 0.05). ANOVA revealed differences in LA εa and SRa among different analysis software and in LA εs and all LA strain rates (all P < 0.05) among field strengths. No significant differences were identified in RA strain across analysis software (RA strain: P = 0.145-0.749; RA strain rates: P = 0.073-0.744) and field strengths (RA strain: P = 0.641-0.794; RA strain rates: P = 0.204-0.458). DATA CONCLUSION: This study demonstrated the pooled reference values of biatrial strain. Age, analysis software, and field strength were attributed to differences in LA strain, whereas RA strain showed consistency across different field strengths and analysis software. Limited study subjects may account for the absence of influence on RA strain. TECHNICAL EFFICACY: Stage 5.
RESUMO
STUDY DESIGN: Retrospective review. OBJECTIVE: To evaluate the effectiveness of halo-pelvic traction and thoracoplasty for pulmonary artery pressure (PAP) and cardiopulmonary function in patients with severe spinal deformity. SUMMARY OF BACKGROUND DATA: The effect of severe spinal deformity on pulmonary arterial hypertension, cardiac structure, and function has received little attention before. PATIENTS AND METHODS: A total of 21 patients with severe spinal deformity were included in our study; all patients were examined by echocardiography and pulmonary function test before and after treatment. The correlations between PAP and pulmonary function were examined using Pearson correlation analysis. RESULTS: The PAP decreased from 58.67 ± 20.24 to 39.00 ± 12.51 mm Hg, and the PAP of 42.86% of the patients returned to normal after treatment. Right cardiac enlargement, left ventricular diastolic function, and pulmonary function were improved at the same time. The ratio of left ventricular to right ventricular diameter returned to normal. Moderate correlations (correlation coefficient: -0.513 to -0.559) between PAP and forced vital capacity and forced expiratory volume in the first second were identified. CONCLUSIONS: Pulmonary arterial hypertension, ventricular diastolic function, and pulmonary function were improved after halo-pelvic traction and thoracoplasty. A moderate negative correlation was identified between PAP and pulmonary function: the more pulmonary function improved, the more PAP decreased.
Assuntos
Hipertensão Arterial Pulmonar , Escoliose , Toracoplastia , Humanos , Artéria Pulmonar/cirurgia , Tração , Pulmão/diagnóstico por imagem , Escoliose/cirurgiaRESUMO
To solve the problems of high cement dosage and poor fluidity of conventional cemented paste backfill (CPB) materials, the fluidity and strength properties of foam-cemented paste backfill (FCPB) were studied in combination. Based on determining the optimum contents of a foaming agent and a foam stabilizer, FCPB density was measured. To investigate the fluidity and strength of FCPB under different foam contents (0%, 5%, 10%, 15%, 20%, 25%, 30%, and 40%), different solid contents (75 wt.% and 77 wt.%), and different cement-tailing ratios (1:4 and 1:5), spread tests and unconfined compressive strength (UCS) tests were conducted. In addition, the FCPB microstructure was analyzed by scanning electron microscopy (SEM). The results indicate that the optimum combination dosages of sodium lauryl sulfate (K12) and sodium carboxymethyl cellulose (CMC) are 0.5 g/L and 0.2 g/L. The density decreases with the foam content (FC), but the fluidity and strength of the FCPB increase first and then decrease with the FC. In addition, the microstructure analysis explains the enhanced strength of FCPB by adding foam. These results contribute to further understanding the effect of foam content on the fluidity and strength of the FCPB.
RESUMO
BACKGROUND: Transjugular intrahepatic portosystemic shunt (TIPS) is an important method to alleviate cirrhotic portal hypertension. But the falling and fracture of the stent which detaches into the heart is a potentially fatal threat. CASE PRESENTATION: We present a case of severe tricuspid regurgitation caused by detached stent falling into the right ventricle after transjugular intrahepatic portosystemic shunt. CONCLUSION: Great attention should be paid to the serious complication of stent fracture after TIPS especially when the dual stent technique is used in TIPS.