Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1042, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658174

RESUMO

High-throughput transparent and flexible electronics are essential technologies for next-generation displays, semiconductors, and wearable bio-medical applications. However, to manufacture a high-quality transparent and flexible electrode, conventional annealing processes generally require 5 min or more at a high temperature condition of 300 °C or higher. This high thermal budget condition is not only difficult to apply to general polymer-based flexible substrates, but also results in low-throughput. Here, we report a high-quality transparent electrode produced with an extremely low thermal budget using Xe-flash lamp rapid photonic curing. Photonic curing is an extremely short time (~ µs) process, making it possible to induce an annealing effect of over 800 °C. The photonic curing effect was optimized by selecting the appropriate power density, the irradiation energy of the Xe-flash lamp, and Ag layer thickness. Rapid photonic curing produced an ITO-Ag-ITO electrode with a low sheet resistance of 6.5 ohm/sq, with a high luminous transmittance of 92.34%. The low thermal budget characteristics of the rapid photonic curing technology make it suitable for high-quality transparent electronics and high-throughput processes such as roll-to-roll.

2.
J Nanosci Nanotechnol ; 21(9): 4632-4637, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691842

RESUMO

Considering the relationship between thin film thickness of transparent conductive oxide (TCO) materials and the reversed pulse time in pulsed-direct current (DC) sputtering, aluminum-doped zinc oxide (AZO) films were deposited on glass substrates at different reversed pulse times by changing oxygen/argon (O2/Ar) gas ratios for window layers of large area CuIn1-xGaxSe2 (CIGS) solar cells. As a result of the reduced sputtering time, the thickness of AZO film was decreased when the reversed pulsed time was increased. The higher resistance and resistivity of the AZO film was obtained at a higher reversed pulse time. From the structural investigations of AZO such as transmittance and X-ray diffraction (XRD), it was possible to observe the relationship between the crystallinity of AZO and transmittance. Even at the short reversed pulse time of 0.5 µs, it can be concluded that the accumulated charges on the AZO target are completely cleared and the AZO layers show the highest figure of merit (FOM) with low sheet resistance and high transmittance.

3.
Sci Total Environ ; 730: 139042, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32402966

RESUMO

The inappropriate disposal of medical waste allows bacteria to acquire antibiotic resistance, which results in a threat to public health. Antibiotic resistance gene (ARG) profiles were determined for 45 different soil samples containing medical waste and 15 nearby soil samples as controls. Besides physical and chemical analyses (i.e., dry matter content, pH value, and metal content), the genomes of microorganisms from the soil samples were extracted for high-throughput sequencing. ARG abundances of these samples were obtained by searching the metagenomic sequences against the antibiotic resistance gene database and the copies of ARGs per copy of the 16S rRNA gene at different levels were assessed. The results showed medical waste accumulation significantly enriched the contents of Cu, Cr, Pb, and As in the tested soil samples. Compared to the controls, the samples collected from areas containing medical waste were significantly enriched (p < 0.05, t-test) with ARGs annotated as sulfonamide and multidrug resistance genes, and in particular, the subtypes sul1 and sul2 (sulfonamide resistance genes), and multidrug_transporter (multidrug resistance gene). Moreover, the ARGs of the samples from the polluted areas were more diverse than those of the control samples (p < 0.05, t-test). The comparatively higher abundance and diversity of ARGs in contaminated soil pose a potential risk to human health.


Assuntos
Solo , Antibacterianos , Resistência Microbiana a Medicamentos , Genes Bacterianos , Eliminação de Resíduos de Serviços de Saúde , RNA Ribossômico 16S
4.
J Nanosci Nanotechnol ; 20(8): 4892-4898, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126671

RESUMO

For the realization of the economical and reliable fabrication process of molybdenum disulfide (MoS²) layers, MoS² thin films were directly formed a on soda-lime glass substrate by RF sputtering and subsequent rapid thermal annealing (RTA) at a temperature range of 400-550 °C. Using scanning electron microscopy and atomic force microscopy, it was possible to investigate more stable surface morphologies of MoS² layers at lower RF sputtering powers irrespective of the RTA temperature. Even at an RTA temperature of less than 550 °C, the Raman exhibited more distinct E12g and A1g peaks for the MoS² layers sputtered at lower RF powers. The X-ray photoelectron spectroscopy results revealed that more distinct peaks were observed at a higher RTA temperature, and the peak positions were moved to higher energies at a lower RF sputtering power. Based on the Hall measurements, higher carrier densities were obtained for the MoS² layers sputtered at lower RF powers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA