Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177506

RESUMO

Region-function combinations are essential for smartphones to be intelligent and context-aware. The prerequisite for providing intelligent services is that the device can recognize the contextual region in which it resides. The existing region recognition schemes are mainly based on indoor positioning, which require pre-installed infrastructures or tedious calibration efforts or memory burden of precise locations. In addition, location classification recognition methods are limited by either their recognition granularity being too large (room-level) or too small (centimeter-level, requiring training data collection at multiple positions within the region), which constrains the applications of providing contextual awareness services based on region function combinations. In this paper, we propose a novel mobile system, called Echo-ID, that enables a phone to identify the region in which it resides without requiring any additional sensors or pre-installed infrastructure. Echo-ID applies Frequency Modulated Continuous Wave (FMCW) acoustic signals as its sensing medium which is transmitted and received by the speaker and microphones already available in common smartphones. The spatial relationships among the surrounding objects and the smartphone are extracted with a signal processing procedure. We further design a deep learning model to achieve accurate region identification, which calculate finer features inside the spatial relations, robust to phone placement uncertainty and environmental variation. Echo-ID requires users only to put their phone at two orthogonal angles for 8.5 s each inside a target region before use. We implement Echo-ID on the Android platform and evaluate it with Xiaomi 12 Pro and Honor-10 smartphones. Our experiments demonstrate that Echo-ID achieves an average accuracy of 94.6% for identifying five typical regions, with an improvement of 35.5% compared to EchoTag. The results confirm Echo-ID's robustness and effectiveness for region identification.

2.
Mol Phylogenet Evol ; 182: 107747, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849095

RESUMO

Cladogenic diversification is often explained by referring to climatic oscillations and geomorphic shifts that cause allopatric speciation. In this regard, southern Africa retains a high level of landscape heterogeneity in vegetation, geology, and rainfall patterns. The legless skink subfamily Acontinae occurs broadly across the southern African subcontinent and therefore provides an ideal model group for investigating biogeographic patterns associated with the region. A robust phylogenetic study of the Acontinae with comprehensive coverage and adequate sampling of each taxon has been lacking up until now, resulting in unresolved questions regarding the subfamily's biogeography and evolution. In this study, we used multi-locus genetic markers (three mitochondrial and two nuclear) with comprehensive taxon coverage (all currently recognized Acontinae species) and adequate sampling (multiple specimens for most taxa) of each taxon to infer a phylogeny for the subfamily. The phylogeny retrieved four well-supported clades in Acontias and supported the monophyly of Typhlosaurus. Following the General Lineage Concept (GLC), many long-standing phylogenetic enigmas within Acontias occidentalis and the A. kgalagadi, A. lineatus and A. meleagris species complexes, and within Typhlosaurus were resolved. Our species delimitation analyses suggest the existence of hidden taxa in the A. occidentalis, A. cregoi and A. meleagris species groups, but also suggest that some currently recognized species in the A. lineatus and A. meleagris species groups, and within Typhlosaurus, should be synonymised. We also possibly encountered "ghost introgression" in A. occidentalis. Our inferred species tree revealed a signal of gene flow, which implies possible cross-over in some groups. Fossil evidence calibration dating results showed that the divergence between Typhlosaurus and Acontias was likely influenced by cooling and increasing aridity along the southwest coast in the mid-Oligocene caused by the opening of the Drake Passage. Further cladogenesis observed in Typhlosaurus and Acontias was likely influenced by Miocene cooling, expansion of open habitat, uplifting of the eastern Great Escarpment (GE), and variation in rainfall patterns, together with the effect of the warm Agulhas Current since the early Miocene, the development of the cold Benguela Current since the late Miocene, and their co-effects. The biogeographic pattern of the Acontinae bears close resemblance to that of other herpetofauna (e.g., rain frogs and African vipers) in southern Africa.


Assuntos
Especiação Genética , Lagartos , Animais , Filogenia , África Austral , Ecossistema , Lagartos/genética , Filogeografia
4.
BMC Evol Biol ; 20(1): 153, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187474

RESUMO

BACKGROUND: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of the world's tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa. RESULTS: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63-5.33 Ma) when populations dispersed from north to south to form two geographically isolated groups. The northern group diverged into a clade north of the Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The latter divergence corresponded to the intensification of the cold Benguela current, which caused western aridification and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fluctuations seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade occurred in a habitat shaped by different climatic parameters, and that the niches differed substantially among the clades of the northern group but were similar among clades of the southern group. CONCLUSION: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B-Ptr, Ptt-A and Pv-A.


Assuntos
Especiação Genética , Tartarugas , África Austral , Animais , Ecossistema , Filogenia , Filogeografia , Tartarugas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA