Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PeerJ ; 12: e17268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708351

RESUMO

Objective: To study the efficacy of PADTM Plus-based photoactivated disinfection (PAD) for treating denture stomatitis (DS) in diabetic rats by establishing a diabetic rat DS model. Methods: The diabetic rat DS model was developed by randomly selecting 2-month-old male Sprague-Dawley rats and dividing them into four groups. The palate and denture surfaces of rats in the PAD groups were incubated with 1 mg/mL toluidine blue O for 1 min each, followed by a 1-min exposure to 750-mW light-emitting diode light. The PAD-1 group received one radiation treatment, and the PAD-2 group received three radiation treatments over 5 days with a 1-day interval. The nystatin (NYS) group received treatment for 5 days with a suspension of NYS of 100,000 IU. The infection group did not receive any treatment. In each group, assessments included an inflammation score of the palate, tests for fungal load, histological evaluation, and immunohistochemical detection of interleukin-17 (IL-17) and tumor necrosis factor (TNF-α) conducted 1 and 7 days following the conclusion of treatment. Results: One day after treatment, the fungal load on the palate and dentures, as well as the mean optical density values of IL-17 and TNF-α, were found to be greater in the infection group than in the other three treatment groups (P < 0.05). On the 7th day after treatment, these values were significantly higher in the infection group than in the PAD-2 and NYS groups (P < 0.05). Importantly, there were no differences between the infection and PAD-1 groups nor between the PAD-2 and NYS groups (P > 0.05). Conclusions: PAD effectively reduced the fungal load and the expressions of IL-17 and TNF-α in the palate and denture of diabetic DS rats. The efficacy of multiple-light treatments was superior to that of single-light treatments and similar to that of NYS.


Assuntos
Diabetes Mellitus Experimental , Desinfecção , Ratos Sprague-Dawley , Estomatite sob Prótese , Animais , Masculino , Ratos , Estomatite sob Prótese/microbiologia , Estomatite sob Prótese/radioterapia , Estomatite sob Prótese/tratamento farmacológico , Desinfecção/métodos , Cloreto de Tolônio/farmacologia , Cloreto de Tolônio/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-17/metabolismo , Modelos Animais de Doenças
2.
Front Med (Lausanne) ; 11: 1380938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695027

RESUMO

Objective: Skin fibrosis is a lesion in the dermis causing to itching, pain, and psychological stress. The gut microbiome plays as an essential role in skin diseases developments. We conducted a Mendelian randomization study to determine the causal association between the gut microbiome and skin fibrosis. Methods: We retrieved valid instrumental variables from the genome-wide association study (GWAS) files of the gut microbiome (n = 18,340) conducted by the MiBioGen consortium. Skin fibrosis-associated data were downloaded from the GWAS Catalog. Subsequently, a two-sample Mendelian randomization (MR) analysis was performed to determine whether the gut microbiome was related to skin fibrosis. A reverse MR analysis was also performed on the bacterial traits which were causally associated with skin fibrosis in the forward MR analysis. In addition, we performed an MR-Pleiotropy Residual Sum and Outlier analysis to remove outliers and a sensitivity analysis to verify our results. Results: According to the inverse variance-weighted estimation, we identified that ten bacterial traits (Class Actinobacteria, Class Bacteroidia, family Bifidobacteriaceae, family Rikenellaceae, genus Lachnospiraceae (UCG004 group), genus Ruminococcaceae (UCG013 group), order Bacteroidales, order Bifidobacteriales, genus Peptococcus and genus Victivallis) were negatively correlated with skin fibrosis while five bacterial traits (genus Olsenella, genus Oscillospira, genus Turicibacter, genus Lachnospiraceae (NK4A136group), and genus Sellimonas) were positively correlated. No results were obtained from reverse MR analysis. No significant heterogeneity or horizontal pleiotropy was observed in MR analysis. Objective conclusion: There is a causal association between the gut microbiome and skin fibrosis, indicating the existence of a gut-skin axis. This provides a new breakthrough point for mechanistic and clinical studies of skin fibrosis.

3.
Int Immunopharmacol ; 134: 112254, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38749333

RESUMO

BACKGROUND: Patients with diabetes are particularly susceptible to Legionella pneumophila (LP) infection, but the exact pathogenesis of LP infection in diabetic patients is still not fully understood. Herein, we investigated the effect of diabetes on immune function during LP infection in vitro and in vivo. METHODS: The time course of LP infection in macrophages under normal and high-glucose (HG) conditions was examined in vitro. Western blot was used to determine nucleotide-binding oligomerization domain 1 (NOD1), kinase 1/2 (ERK1/2), mitogen-activated protein kinase p38 (MAPK p38), and c-Jun N-terminal kinases (JNK). Enzyme-linked immunosorbent assay (ELISA) was used to assess the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Cell Counting Kit-8 (CCK8) assay assessed U937 cell viability after treating cells with different concentrations of high sugar medium and ML130 (NOD1 inhibitor). For the in vivo study, normal and streptozocin-induced diabetic guinea pigs were infected with LP for 6, 24, and 72 h, after which NOD1, MAPK-related signals, TNF-α, and IL-6 expression in lung tissues were assessed using immunohistochemistry, western blot, and RT-PCR. RESULTS: HG attenuated the upregulation of NOD1 expression and reduced TNF-α and IL-6 secretion caused by LP compared with LP-infected cells exposed to normal glucose levels (all p < 0.05). In diabetic guinea pigs, HG inhibited the upregulation of NOD1 expression in lung tissues and the activation of p38, ERK1/2, and cJNK caused by LP infection compared to control pigs (all p < 0.05). CONCLUSION: HG attenuates the response of macrophages to LP infection by inhibiting NOD1 upregulation and the activation of MAPK signaling.

4.
Small ; : e2400855, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563589

RESUMO

The transition metal oxides/sulfides are considered promising catalysts due to their abundant resources, facile synthesis, and reasonable electrocatalytic activity. Herein, a significantly improved intrinsic catalytic activity is achieved for constructing a Co-based nanocrystal (Co-S@NC) with the coordination of Co─S, Co─S─C, and Co─Nx─C. The calculational and experimental results demonstrate that the diversified chemical environment of Co-cations induces the transition of 3d orbitals to a high spin-state that exhibits the coexistence of Co2+ with fully occupied dπ orbitals and Co3+ with unpaired electrons in dπ orbitals. The diverse dπ orbitals occupation contributes to an elevated d-band center of Co ions, which accelerates oxygen reduction reaction and oxygen evolution reaction electrocatalytic kinetics of the Co-S@NC nanocrystal. Therefore, the Li-O2 batteries with Co-S@NC as cathode catalyst exhibit 300 cycles at the current density of 500 mA g-1 with a cut-off capacity of 1000 mAh g-1. Moreover, the ultrahigh discharge specific capacity of 34 587 mAh g-1 is obtained at a current density of 1000 mA g-1, corresponding to the energy density 949 Wh kg-1 of a prototype Li-O2 battery. The study on 3d orbital regulation of nanocrystals provides an innovative strategy for bifunctional electrocatalysts toward the practical application of metal-air batteries.

5.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542381

RESUMO

Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. The accumulation of amyloid-beta (Aß) plaques is a distinctive pathological feature of AD patients. The aims of this study were to evaluate the therapeutic effect of chicoric acid (CA) on AD models and to explore its underlying mechanisms. APPswe/Ind SH-SY5Y cells and 5xFAD mice were treated with CA. Soluble Aß1-42 and Aß plaque levels were analyzed by ELISA and immunohistochemistry, respectively. Transcriptome sequencing was used to compare the changes in hippocampal gene expression profiles among the 5xFAD mouse groups. The specific gene expression levels were quantified by qRT-PCR and Western blot analysis. It was found that CA treatment reduced the Aß1-42 levels in the APPswe/Ind cells and 5xFAD mice. It also reduced the Aß plaque levels as well as the APP and BACE1 levels. Transcriptome analysis showed that CA affected the synaptic-plasticity-related genes in the 5xFAD mice. The levels of L1CAM, PSD-95 and synaptophysin were increased in the APPswe/Ind SH-SY5Y cells and 5xFAD mice treated with CA, which could be inhibited by administering siRNA-L1CAM to the CA-treated APPswe/Ind SH-SY5Y cells. In summary, CA reduced Aß levels and increased the expression levels of synaptic-function-related markers via L1CAM in AD models.


Assuntos
Doença de Alzheimer , Ácidos Cafeicos , Molécula L1 de Adesão de Célula Nervosa , Neuroblastoma , Doenças Neurodegenerativas , Succinatos , Humanos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Ácido Aspártico Endopeptidases/metabolismo , Peptídeos beta-Amiloides/metabolismo
6.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067476

RESUMO

Taxanes are the best-known compounds in Taxus cuspidata owing to their strong anticancer effects. However, the traditional taxanes extraction method is the solid-liquid extraction method, which is limited by a large energy consumption and low yield. Therefore, it is urgent to find an efficient method for taxanes extraction. The ultrasonic microwave synergistic extraction (UME) method integrates the cavitation effect of ultrasound and the intensifying heat transfer (ionic conduction and dipole rotation of molecules) effect of microwave to accelerate the release of intracellular compounds and is used in active ingredient extractions. This study aimed to evaluate the performance of UME in extracting taxanes from T. cuspidata needles (dichloromethane-ethanol as extractant). A single-factor experiment, Plackett-Burman design, and the response surface method showed that the optimal UME parameters for taxanes extraction were an ultrasonic power of 300 W, a microwave power of 215 W, and 130 sieve meshes. Under these conditions, the taxanes yield was 570.32 µg/g, which increased by 13.41% and 41.63% compared with the ultrasound (US) and microwave (MW) treatments, respectively. The reasons for the differences in the taxanes yield were revealed by comparing the physicochemical properties of T. cuspidata residues after the UME, US, and MW treatments. The cell structures were significantly damaged after the UME treatment, and numerous tiny holes were observed on the surface. The absorption peaks of cellulose, hemicellulose, and lignin increased significantly in intensity, and the lowest peak temperature (307.40 °C), with a melting enthalpy of -5.19 J/g, was found after the UME treatment compared with the US and MW treatments. These results demonstrate that UME is an effective method (570.32 µg/g) to extract taxanes from T. cuspidata needles by destroying cellular structures.


Assuntos
Taxoides , Taxus , Taxoides/química , Taxus/química , Ultrassom , Micro-Ondas , Extratos Vegetais/química
7.
Plants (Basel) ; 12(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005714

RESUMO

In this research, the cell growth, physiological, and biochemical reactions, as well as the paclitaxel production, of Taxus cuspidata suspension cells after treatment with polyethylene glycol (PEG), cyclodextrin (CD), or salicylic acid (SA) (alone or in combination) were investigated. To reveal the paclitaxel synthesis mechanism of T. cuspidata suspension cells under elicitor treatment, the transcriptomics of the Control group and P + C + S group (PEG + CD + SA) were compared. The results show that there were no significant differences in cell biomass after 5 days of elicitor treatments. However, the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and the activities of phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) after elicitor combination treatments were decreased compared with the single-elicitor treatment. Meanwhile, the antioxidant enzyme activity (superoxide dismutase (SOD), catalase (CAT), and peroxidase (PO)) and the contents of soluble sugar and soluble protein were increased after combination elicitor treatments. Additionally, the paclitaxel yield after treatment with the combination of all three elicitors (P + C + S) was 6.02 times higher than that of the Control group, thus indicating that the combination elicitor treatments had a significant effect on paclitaxel production in T. cuspidata cell suspension culture. Transcriptomics analysis revealed 13,623 differentially expressed genes (DEGs) between the Control and P + C + S treatment groups. Both GO and KEGG analyses showed that the DEGs mainly affected metabolic processes. DEGs associated with antioxidant enzymes, paclitaxel biosynthesis enzymes, and transcription factors were identified. It can be hypothesized that the oxidative stress of suspension cells occurred with elicitor stimulation, thereby leading to a defense response and an up-regulation of the gene expression associated with antioxidant enzymes, paclitaxel synthesis enzymes, and paclitaxel synthesis transcription factors; this ultimately increased the production of paclitaxel.

8.
Curr Issues Mol Biol ; 45(8): 6564-6582, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37623233

RESUMO

Taxanes are natural compounds for the treatment of lung cancer, but the molecular mechanism behind the effects is unclear. In the present study, through network pharmacology and molecular docking, the mechanism of the target and pathway of taxanes in the treatment of lung cancer was studied. The taxanes targets were determined by PubChem database, and an effective compounds-targets network was constructed. The GeneCards database was used to determine the disease targets of lung cancer, and the intersection of compound targets and disease targets was obtained. The Protein-Protein Interaction (PPI) network of the intersection targets was analyzed, and the PPI network was constructed by Cytoscape 3.6.0 software. The hub targets were screened according to the degree value, and the binding activity between taxanes and hub targets was verified by molecular docking. The results showed that eight taxane-active compounds and 444 corresponding targets were screened out, and 131 intersection targets were obtained after mapping with lung cancer disease targets. The hub targets obtained by PPI analysis were TP53, EGFR, and AKT1. Gene Ontology (GO) biological function enrichment analysis obtained 1795 biological process (BP) terms, 101 cellular component (CC) terms, and 164 molecular function (MF) terms. There were 179 signaling pathways obtained by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Twenty signaling pathways were screened out, mainly pathways in cancer, proteoglycans in cancer pathway, microRNAs in cancer pathway, and so on. Molecular docking shows that the binding energies of eight taxanes with TP53, EGFR, and AKT1 targets were less than -8.8 kcal/mol, taxanes acts on TP53, EGFR, and AKT1 targets through pathways in cancer, proteoglycans in cancer pathway and microRNAs in cancer pathway, and plays a role in treating lung cancer in biological functions such as protein binding, enzyme binding, and identical protein binding.

9.
Mol Ther ; 31(6): 1739-1755, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37101395

RESUMO

The available targeted therapies for gastric cancer (GC) are still limited, so it is important to discover novel molecules as potential treatment options. Proteins or peptides encoded by circular RNAs (circRNAs) are increasingly reported to play essential roles in malignancies. The aim of the present study was to identify an undiscovered protein encoded by circRNA and explore its key role and molecular mechanism in GC progression. CircMTHFD2L (hsa_circ_0069982) was screened and validated as a downregulated circRNA with coding potential. The protein encoded by circMTHFD2L, named CM-248aa, was identified for the first time by immunoprecipitation and mass spectrometry. CM-248aa was significantly downregulated in GC, while its low expression was associated with advanced tumor-node-metastasis (TNM) stage and histopathological grade. Low expression of CM-248aa could be an independent risk factor for poor prognosis. Functionally, CM-248aa, instead of circMTHFD2L suppressed the proliferation and metastasis of GC in vitro and in vivo. Mechanistically, CM-248aa competitively targeted the acidic domain of SET nuclear oncogene (SET) and acted as an endogenous inhibitor of the SET-protein phosphatase 2A interaction to promote dephosphorylation of AKT, extracellular signal-regulated kinase, and P65. Our discovery revealed that CM-248aa could be a potential prognostic biomarker and endogenous therapeutic option for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , RNA Circular/genética , Neoplasias Gástricas/patologia , RNA/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética
10.
Front Oncol ; 13: 1119915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959786

RESUMO

Background: Medullary thyroid carcinoma (MTC) is a special type of thyroid carcinoma derived from the C cell of the thyroid gland. Because of the poor prognosis of MTC, a large number of studies on MTC have been conducted in the last 10 years. To better comprehend, it is necessary to clarify and define the dominant countries, organizations, core journals, important authors, and their cumulative research contributions, as well as the cooperative relationships between them. Method: English publications with article type article or review about MTC from January 2012 to December 2021 was retrieved from Web of Science core collection, and VOSviewer, CiteSpace, and Microsoft Excel were applied for bibliometric study. Result: A total of 1208 articles and reviews were included in this study. The 1208 papers were written by 6364 authors from 1734 organizations in 67 countries, published in 408 journals, and cited 24118 references from 3562 journals. The number of publications was essentially flat from 2012-2021, with the largest proportion of publications coming from the U.S., followed by Italy and China. Thyroid was the most productive journal, and Journal of clinical endocrinology & metabolism was the most cited journal. University of Texas MD Anderson Cancer Center was the most productive institution and Luca Giovanella, was the most productive author. Diagnostic tools, surgical treatment, non-surgical treatment, genetics and relationship with other endocrine diseases were the main research interests in this field. Prognosis has been a cutting-edge topic since 2017. Conclusion: As a thyroid cancer with poor prognosis, MTC has received continuous attention in recent years. Current MTC studies mainly focused on disease intervention, mechanism research and prognosis. The main point of this study is to provide an overview of the development process and hot spots of MTC in the last decade. These might provide ideas for further research in the MTC field.

11.
Microbiol Spectr ; : e0410522, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744887

RESUMO

Ralstonia insidiosa and Chryseobacterium gleum are bacterial species commonly found in potable water systems, and these two species contribute to the robustness of biofilm formation in a model six-species community from the International Space Station (ISS) potable water system. Here, we set about characterizing the interaction between these two ISS-derived strains and examining the extent to which this interaction extends to other strains and species in these two genera. The enhanced biofilm formation between the ISS strains of R. insidiosa and C. gleum is robust to starting inoculum and temperature and occurs in some but not all tested growth media, and evidence does not support a soluble mediator or coaggregation mechanism. These findings shed light on the ISS R. insidiosa and C. gleum interaction, though such enhancement is not common between these species based on our examination of other R. insidiosa and C. gleum strains, as well as other species of Ralstonia and Chryseobacterium. Thus, while the findings presented here increase our understanding of the ISS potable water model system, not all our findings are broadly extrapolatable to strains found outside of the ISS. IMPORTANCE Biofilms present in drinking water systems and terminal fixtures are important for human health, pipe corrosion, and water taste. Here, we examine the enhanced biofilm of cocultures for two very common bacteria from potable water systems: Ralstonia insidiosa and Chryseobacterium gleum. While strains originally isolated on the International Space Station show enhanced dual-species biofilm formation, terrestrial strains do not show the same interaction properties. This study contributes to our understanding of these two species in both dual-culture and monoculture biofilm formation.

12.
Environ Toxicol ; 38(5): 1153-1161, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36811345

RESUMO

Clinical application of doxorubicin is limited because of its potential side effects. The present study examined whether naringin had protective actions on doxorubicin-induced liver injury. Male BALB/c mice and alpha mouse liver 12 (AML-12) cells were used in this paper. The results showed that AML-12 cells treated with naringin significantly reduced cell injury, reactive oxygen species release and apoptosis level; Moreover, naringin notably alleviated liver injury by decreasing aspartate transaminase, alanine transaminase and malondialdehyde, and increasing superoxide dismutase, glutathione and catalase levels. Mechanism researches indicated that naringin increased the expression levels of sirtuin 1 (SIRT1), and inhibited the downstream inflammatory, apoptotic and oxidative stress signaling pathways. Further validation was obtained by knocking down SIRT1 in vitro, which proved the effects of naringin on doxorubicin-induced liver injury. Therefore, naringin is a valuable lead compound for preventing doxorubicin-induced liver damage by reducing oxidative stress, inflammation, and apoptosis via up-regulation of SIRT1.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Leucemia Mieloide Aguda , Sirtuína 1 , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/prevenção & controle , Doxorrubicina/toxicidade , Inflamação/induzido quimicamente , Inflamação/metabolismo , Leucemia Mieloide Aguda/metabolismo , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regulação para Cima , Flavanonas/farmacologia , Flavanonas/uso terapêutico
13.
Adv Sci (Weinh) ; 10(6): e2205903, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36596707

RESUMO

Coherent optical control of the magnetization in ferromagnetic (FM) mediums using ultrafast nonthermal effect paves a promising avenue to improve the speed and repetition rate of the magnetization manipulation. Whereas previously, only heat-induced or helicity-dependent magnetization dynamics are demonstrated in metallic ferromagnets. Here, the linearly-polarized light control of magnetization is demonstrated in FM Co coupled with ferroelectric (FE) BiFeO3 by tuning the light polarization direction. It is revealed that in the Co/BiFeO3 heterostructure excited by femtosecond laser pulses, the magnetization precession amplitude follows a sinusoidal dependence on the laser polarization direction. This nonthermal control of coherent magnetization rotation is attributed to the optical rectification effect in the BiFeO3 layer, which yields a FE polarization depending on the light polarization, and the subsequent modulation of magnetic energy in Co by the electrostriction-induced strain. This work demonstrates an effective route to nonthermally manipulate the ultrafast magnetization dynamics in metallic ferromagnets.

14.
Front Oncol ; 13: 1253895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188308

RESUMO

Background: To assess the prognostic significance of preoperative hemoglobin, albumin, lymphocyte, and platelet (HALP) score combined with multiple peripheral blood indicators in patients with early breast cancer (EBC). Methods: A total of 411 patients with early invasive breast cancer underwent breast-conserving surgery or radical surgery at Changzhou No.2 People's Hospital from January 2015 to December 2020. The cut-off values of HALP, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and prognostic nutritional index (PNI) were calculated using the software X-tile. The primary outcomes were recurrence-free survival (RFS), which was analyzed using the Kaplan Meier (K-M) method, while log-rank was used to test the differences between high and low curves. Cox regression analysis was used to analyze the prognostic significance of HALP. Furthermore, the prognostic predictive value of independent prognostic factors was determined using the receiver operating characteristic (ROC) curve. Results: Low HALP score (P<0.0001), high PLR (P<0.0001), and low LMR (P = 0.0345) were significantly associated with worse RFS. Body mass index (BMI)<24 (P = 0.0036), no diabetes (P = 0.0205), earlier TNM stage (P = 0.0005), and no lymph node metastasis (P = 0.0022) were positively correlated with longer survival HALP scores (hazard ratio [HR] 95% confidence interval [CI]: 0.08 (0.024-0.265), P<0.0001), BMI (HR 95%CI: 0.254 (0.109-0.589), P = 0.001), TNM stage (HR 95%CI: 0.153 (0.041-0.571), P = 0.005), and diabetes (HR 95%CI: 0.259 (0.085-0.785), P = 0.017) were demonstrated as independent prognostic factors by Cox regression analysis. The ROC curves depicted that the two most valuable factors were TNM stage and HALP, and combined independent factors were more accurate in prognostic prediction than any single factor. This further indicated that the TNM stage combined HALP or BMI were more valuable combinations. Conclusion: The HALP score was an independent prognostic factor for EBC and was significantly associated with worse RFS. This score may predict the probability of postoperative tumor recurrence or metastasis before surgery.

15.
Dalton Trans ; 51(42): 16206-16214, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36217798

RESUMO

Lithium-sulfur batteries are expected to be prospective candidates of high-energy-storage systems due to their high theoretical specific capacity. However, poor electrical conductivity, severe polysulfide shuttle effect and low sulfur utilization generally cause inferior electrochemical performance, hence hindering the practical development.  In this study, common makeup cotton derived self-supporting porous carbon fibers (SPCFs) are prepared by a facile simultaneous activation/pyrolysis process accompanied by the effectively regulation of a KHCO3 activator. The as-prepared SPCF materials have mutually cross-linked porous skeletons with an ultrahigh specific surface area of 2124.9 m2 g-1 and a large pore volume of 1.01 cm3 g-1, whilst exhibiting robust flexibility. When directly used as a self-supporting carbon current collector for encapsulating sulfur, the interconnected and abundant porous carbon fibers can not only immobilize soluble polysulfides, but also form a highly conductive network for the favorable redox transformation of adsorbed polysulfides. Moreover, the voids between the carbon skeletons can alleviate the volume change of sulfur cathodes during charge/discharge. Owing to these structure merits, the optimized SPCF-based sulfur cathode with a sulfur loading of 3.0 mg cm-2 shows a high coulombic efficiency of approximately 99% and delivers a first discharge capacity of 778 mA h g-1 at 0.2 C. Even at a relatively high current rate of 0.5 C, the reversible capacity of 450 mA h g-1 can be obtained after 300 cycles. The above-mentioned self-supporting porous carbon current collectors provide a guidance for high-performance lithium-sulfur batteries.

16.
Pharmacol Res ; 185: 106508, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36243329

RESUMO

Chronic pancreatitis (CP) is a chronic wasting disease with an increasing incidence. As an important factor in the pathogenesis of CP, macrophages play a considerable role in the most typical pathological agents throughout the early to late stages of CP. Macrophage-associated cytokines are biomarkers that bring new possibilities for the early diagnosis of CP and differential diagnosis with pancreatic cancer and pancreatic diseases. In addition, in established CP, macrophage interactions with T lymphocytes leads to immune dysregulation, and macrophage secretion of proinflammatory cytokines is considered a potent driver of acinar-to-ductal metaplasia (ADM). In advanced CP, macrophages interact with pancreatic stellate cells (PSCs) and islet cells in an autocrine or paracrine manner to promote the development of pancreatic fibrosis and islet dysfunction. Here, we review the crosstalk of macrophages with pancreatic acinar cells, PSCs, other immune cells and islet cells at different stages of CP progression, as well as current CP immunotherapies targeting macrophages, which will help explain the decisive role of macrophages in CP and their potential as targets of CP immunotherapy. Furthermore, macrophage-targeted immunotherapy can be advanced, not only in terms of physiology and pathology but also in terms of further optimization of dose, forms and delivery. All these efforts are beneficial to enhancing the targeting of macrophages in the treatment of CP.


Assuntos
Pancreatite Crônica , Humanos , Pancreatite Crônica/tratamento farmacológico , Células Estreladas do Pâncreas , Macrófagos , Citocinas/uso terapêutico , Imunoterapia , Pâncreas/patologia
17.
Front Genet ; 13: 860067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199579

RESUMO

Background: Immunotherapy with checkpoint inhibitors usually has a low response rate in some cutaneous melanoma (CM) cases due to its cold nature. Hence, identification of hot tumors is important to improve the immunotherapeutic efficacy and prognoses of CMs. Methods: Fatty acid (FA) metabolism-related genes were extracted from the Gene Set Enrichment Analysis and used in the non-negative matrix factorization (NMF), copy number variation frequency, tumor mutation burden (TMB), and immune-related analyses, such as immunophenoscore (IPS). We generate a risk model and a nomogram for predicting patient prognoses and predicted the potential drugs for therapies using the Connectivity Map. Moreover, the NMF and the risk model were validated in a cohort of cases in the GSE65904 and GSE54467. At last, immunohistochemistry (IHC) was used for further validation. Results: Based on the NMF of 11 FA metabolism-related DEGs, CM cases were stratified into two clusters. Cluster 2 cases had the characteristics of a hot tumor with higher immune infiltration levels, higher immune checkpoint (IC) molecules expression levels, higher TMB, and more sensitivity to immunotherapy and more potential immunotherapeutic drugs and were identified as hot tumors for immunotherapy. The risk model and nomogram displayed excellent predictor values. In addition, there were more small potential molecule drugs for therapies of CM patients, such as ambroxol. In immunohistochemistry (IHC), we could find that expression of PLA2G2D, ACOXL, and KMO was upregulated in CM tissues, while the expression of IL4I1, BBOX1, and CIDEA was reversed or not detected. Conclusion: The transcriptome profiles of FA metabolism-related genes were effective for distinguishing CM into hot-cold tumors. Our findings may be valuable for development of effective immunotherapy for CM patients and for proposing new therapy strategies.

18.
Cancer Sci ; 113(12): 4135-4150, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36114757

RESUMO

Long noncoding RNAs (lncRNAs) are associated with various types of cancer. However, the precise roles of many lncRNAs in tumor progression remain unclear. In this study, we found that the expression of the lncRNA TP53TG1 was downregulated in gastric cancer (GC) and it functioned as a tumor suppressor. In addition, low TP53TG1 expression was significantly associated with poor survival in patients with GC. TP53TG1 inhibited the proliferation, metastasis, and cell cycle progression of GC cells, while it promoted their apoptosis. m6A modification sites are highly abundant on TP53TG1, and demethylase ALKBH5 reduces TP53TG1 stability and downregulates its expression. TP53TG1 interacts with cancerous inhibitor of protein phosphatase 2A (CIP2A) and triggers its ubiquitination-mediated degradation, resulting in the inhibition of the PI3K/AKT pathway. These results suggest that TP53TG1 plays an important role in inhibiting the progression of GC and provides a crucial target for GC treatment.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia
19.
Nanomaterials (Basel) ; 12(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014658

RESUMO

In this work, cellular silica was synthesized by using microbubbles as templates, which contain a mixture of argon and silicon tetrafluoride (SiF4). The latter is generated from decomposition of hexafluorosilicic acid (H2SiF6) at ambient conditions. The specific surface area of cellular silica can be as high as 130 m2/g, the size of the cavity is hundreds-of-nanometers, and the thickness of the cavity wall is around 30 nm. The cavity size, apparent packing density, and porosity of cellular silica strongly depend on the nature of the aqueous solutions; the cavity size appears to be negatively proportional to the surface tension, but thickness of cavity walls seems to be weakly affected by the aqueous properties. An attempt was made to introduce aluminum atoms in situ in the second-coordination sphere of Si atoms and/or load aluminum into the silica structure. Cellular silica with large pores facilitate the transfer of large molecules, including polymers and enzymes; thus, it could find applications in (bio)catalysis, sorption, controlled release and separations.

20.
BMC Cancer ; 22(1): 883, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962309

RESUMO

BACKGROUND: Owing to the low ratio of patients benefitting from immunotherapy, patient stratification becomes necessary. An accurate patient stratification contributes to therapy for different tumor types. Therefore, this study aimed to subdivide colon cancer patients for improved combination immunotherapy. METHODS: We characterized the patients based on urea cycle metabolism, performed a consensus clustering analysis and constructed a risk model in the cancer genome atlas cohort. Colon cancer patients were further categorized into two tags: clusters, and risk groups, for the exploration of combination immunotherapy. In addition to external validation in the Gene Expression Omnibus datasets, several images of immunohistochemistry were used for further validation. RESULTS: Patient characterization based on urea cycle metabolism was related to immune infiltration. An analysis of consensus clustering and immune infiltration generated a cluster distribution and identified patients in cluster 1 with high immune infiltration levels as hot tumors for immunotherapy. A risk model of seven genes was constructed to subdivide the patients into low- and high-risk groups. Validation was performed using a cohort of 731 colon cancer patients. Patients in cluster 1 had a higher immunophenoscore (IPS) in immune checkpoint inhibitor therapy, and those other risk groups displayed varying sensitivities to potential combination immunotherapeutic agents. Finally, we subdivided the colon cancer patients into four groups to explore combination immunotherapy. Immunohistochemistry analysis showed that protein expression of two genes were upregulated while that of other two genes were downregulated or undetected in cancerous colon tissues. CONCLUSION: Using subdivision to combine chemotherapy with immunotherapy would not only change the dilemma of immunotherapy in not hot tumors, but also promote the proposition of more rational personalized therapy strategies in future.


Assuntos
Neoplasias do Colo , Imunoterapia , Estudos de Coortes , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Humanos , Fatores Imunológicos , Imunoterapia/métodos , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA