Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Immunol Invest ; : 1-22, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622991

RESUMO

Osteoarthritis (OA) is now widely acknowledged as a low-grade inflammatory condition, in which the intrinsic immune system plays a significant role in its pathogenesis. While the involvement of macrophages and T cells in the development of OA has been extensively reviewed, recent research has provided mounting evidence supporting the crucial contribution of NK cells in both the initiation and advancement of OA. Accumulated evidence has emerged in recent years indicating that NK cells play a critical role in OA development and progression. This review will outline the ongoing understanding of the utility of NK cells in the etiology of OA, focusing on how NK cells interact with chondrocytes, synoviocytes, osteoclasts, and other immune cells to influence the course of OA disease.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38591204

RESUMO

BACKGROUND: Inguinal hernia in adults is a common and frequent disease in surgery, prone to occur in the elderly or in those with a weak abdominal wall. Despite its prevalence, Molecular mechanisms underlying inguinal hernia formation are unclear. OBJECTIVE: This study aims to identify potential gene markers for inguinal hernia and available drugs. METHODS: Pubmed2Ensembl text mining was used to identify genes related to "inguinal hernia" keywords. The GeneCodis system was used to specify GO biological process terms and KEGG pathways defined in the Kyoto Encyclopedia of Genes and Genomes (KEGG). The STRING tool was used to construct protein-protein interaction networks, which were then visualized using Cytoscape.CytoHubba and Molecular Complex Detection were utilized to analyze the module (MCODE). A GO and KEGG analysis of gene modules was conducted using the DAVID platform database. Hub genes are those that are concentrated in prominent modules. The druggene interaction database was also used to identify potential drugs for inguinal hernia patients based on their interactions between the hub genes. Finally, a Mendelian randomization study was conducted based on genome-wide association studies to determine whether hub genes cause inguinal hernias. RESULTS: The identification of 96 genes associated with inguinal hernia was carried out using text mining techniques. It was constructed using PPI networks with 80 nodes and 476 edges, and the sequence of the genes was performed using CytoHubba. MCODE analysis identified three gene modules. Three modules contain 37 genes clustered as hub candidate genes associated with inguinal hernia patients. The PI3K-Akt, MAPK, AGE-RAGE, and HIF-1 pathways were found to be enriched in signaling pathways. Sixteen of the 37 genes were found to be targetable by 30 existing drugs. The relationship between hub genes and inguinal hernia was examined using Mendelian randomization. The research revealed nine genes that may be connected with inguinal hernia, such as POMC, CD40LG, TFRC, VWF, LOX, IGF2, BRCA1, TNF, and HGF in the plasma. By inverse variance weighting, ALB was associated with an increased risk of inguinal hernia with an OR of 1.203 (OR [95%] = 1,04 [1.012 to 1.089], p = 0.008). CONCLUSION: We identified potential hub genes for inguinal hernia, predicted potential drugs for inguinal hernia, and reverse-validated potential genes by Mendelian randomization. This may provide further insights into asymptomatic pre-diagnostic methods and contribute to studies to understand the molecular mechanisms of risk genes associated with inguinal hernia.

3.
Crit Rev Food Sci Nutr ; : 1-29, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644658

RESUMO

As one of the most important vegetables and oils consumed globally, cruciferous foods are appreciated for their high nutritional value. However, there is no comprehensive knowledge to sufficiently unravel the "flavor mystery" of cruciferous foods. The present review provides a comprehensive literature on the recent advances regarding the contribution of glucosinolates (GSL) degradation products to cruciferous foods odor, which focuses on key GSL degradation products contributing to distinct odor of cruciferous foods (Brassica oleracea, Brassica rapa, Brassica napus, Brassica juncea, Raphanus sativus), and key factors affecting GSL degradation pathways (i.e., enzyme-induced degradation, thermal-induced degradation, chemical-induced degradation, microwave-induced degradation) during different processing and cooking. A total of 93 volatile GSL degradation products (i.e., 36 nitriles, 33 isothiocyanates, 3 thiocyanates, 5 epithionitriles, and 16 sulfides) and 29 GSL (i.e., 20 aliphatic, 5 aromatic, and 4 indolic) were found in generalized cruciferous foods. Remarkably, cruciferous foods have a distinctive pungent, spicy, pickled, sulfur, and vegetable odor. In general, isothiocyanates are mostly present in enzyme-induced degradation of GSL and are therefore often enriched in fresh-cut or low-temperature, short-time cooked cruciferous foods. In contrast, nitriles are mainly derived from thermal-induced degradation of GSL, and are thus often enriched in high-temperature, long-time cooked cruciferous foods.


Processing and cooking can cause degradation of glucosinolates and formation of volatiles.Structure­odor relationship of glucosinolates degradation products is discussed.Nitriles, isothiocyanates, and sulfides play an important role in cruciferous foods odor.Both enzyme- and thermal-induced degradation of glucosinolates is strongly pH-dependent.

4.
Plant Methods ; 20(1): 56, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659006

RESUMO

BACKGROUND: Traditional method of wood species identification involves the use of hand lens by wood anatomists, which is a time-consuming method that usually identifies only at the genetic level. Computer vision method can achieve "species" level identification but cannot provide an explanation on what features are used for the identification. Thus, in this study, we used computer vision methods coupled with deep learning to reveal interspecific differences between closely related tree species. RESULT: A total of 850 images were collected from the cross and tangential sections of 15 wood species. These images were used to construct a deep-learning model to discriminate wood species, and a classification accuracy of 99.3% was obtained. The key features between species in machine identification were targeted by feature visualization methods, mainly the axial parenchyma arrangements and vessel in cross section and the wood ray in tangential section. Moreover, the degree of importance of the vessels of different tree species in the cross-section images was determined by the manual feature labeling method. The results showed that vessels play an important role in the identification of Dalbergia, Pterocarpus, Swartzia, Carapa, and Cedrela, but exhibited limited resolutions on discriminating Swietenia species. CONCLUSION: The research results provide a computer-assisted tool for identifying endangered tree species in laboratory scenarios, which can be used to combat illegal logging and related trade and contribute to the implementation of CITES convention and the conservation of global biodiversity.

5.
J Med Chem ; 67(9): 7635-7646, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38661304

RESUMO

The T-cell receptor (TCR) is a crucial molecule in cellular immunity. The single-chain T-cell receptor (scTCR) is a potential format in TCR therapeutics because it eliminates the possibility of αß-TCR mispairing. However, its poor stability and solubility impede the in vitro study and manufacturing of therapeutic applications. In this study, some conserved structural motifs are identified in variable domains regardless of germlines and species. Theoretical analysis helps to identify those unfavored factors and leads to a general strategy for stabilizing scTCRs by substituting residues at exact IMGT positions with beneficial propensities on the consensus sequence of germlines. Several representative scTCRs are displayed to achieve stability optimization and retain comparable binding affinities with the corresponding αß-TCRs in the range of µM to pM. These results demonstrate that our strategies for scTCR engineering are capable of providing the affinity-enhanced and specificity-retained format, which are of great value in facilitating the development of TCR-related therapeutics.


Assuntos
Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Estabilidade Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Engenharia de Proteínas , Ligação Proteica
6.
Food Chem ; 448: 139124, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554586

RESUMO

In this study, we applied various thermal pretreatment methods (e.g., hot-air, microwave, and stir-frying) to process walnut kernels, and conducted comparative analysis of the physicochemical properties, nutritional components, in vitro antioxidant activity, and flavor substances of the extracted walnut oil (WO). The results indicated that, thermal pretreatment significantly increased the extraction of total trace nutrients (e.g., total phenols, tocopherols, and phytosterols) in WO. The WO produced using microwave had 2316.71 mg/kg of total trace nutrients, closely followed by the stir-frying method, which yielded an 11.22% increase compared to the untreated method. The WO obtained by the microwave method had a higher Oxidative inductance period (4.05 h) and oil yield (2.48%). After analyzing the flavor in WO, we found that aldehydes accounted for 28.77% of the 73 of volatile compounds and 58.12% of the total flavor compound content in microwave-pretreated WO, these percentages were higher than those recorded by using other methods. Based on the comprehensive score obtained by the PCA, microwave-pretreatment might be a promising strategy to improve the quality of WO based on aromatic characteristics.


Assuntos
Aromatizantes , Juglans , Oxirredução , Óleos de Plantas , Paladar , Compostos Orgânicos Voláteis , Juglans/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Aromatizantes/química , Aromatizantes/análise , Óleos de Plantas/química , Antioxidantes/análise , Antioxidantes/química , Temperatura Alta , Micro-Ondas
7.
Viruses ; 16(3)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543730

RESUMO

Members of the Flaviviridae family, encompassing the Flavivirus and Hepacivirus genera, are implicated in a spectrum of severe human pathologies. These diseases span a diverse spectrum, including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, and adverse fetal outcomes, such as congenital heart defects and increased mortality rates. Notably, infections by Flaviviridae viruses have been associated with substantial cardiovascular compromise, yet the exploration into the attendant cardiovascular sequelae and underlying mechanisms remains relatively underexplored. This review aims to explore the epidemiology of Flaviviridae virus infections and synthesize their cardiovascular morbidities. Leveraging current research trajectories and our investigative contributions, we aspire to construct a cogent theoretical framework elucidating the pathogenesis of Flaviviridae-induced cardiovascular injury and illuminate prospective therapeutic avenues.


Assuntos
Doenças Cardiovasculares , Infecções por Flaviviridae , Flaviviridae , Flavivirus , Humanos , Doenças Cardiovasculares/epidemiologia , Flaviviridae/genética , Hepacivirus
8.
Eur J Surg Oncol ; 50(6): 108280, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38537365

RESUMO

BACKGROUND: The impact of achieving textbook oncological outcome (TOO) as a multimodal therapy quality indicator on the prognosis of advanced gastric cancer (AGC) remains inadequately assessed. METHODS: Patients with AGC who underwent curative gastrectomy between January 2010 and December 2017 at two East Asian medical centers were included. TOO was defined as achieving the textbook outcome (TO) and receiving neoadjuvant and/or adjuvant chemotherapy (NCT or ACT). Cox and logistic regression models were used to identify prognostic and non-TOO-associated risk factors. RESULTS: Among 3626 patients, 57.6% achieved TOO (TOO group), exhibiting significantly better 5-year overall survival (OS) and disease-free survival (DFS) than the non-TOO group (both p < 0.05). Multivariate Cox regression identified TOO as an independent prognostic factor for 5-year OS (HR, 0.67; 95% CI, 0.61-0.74; p < 0.001) and DFS (HR, 0.73; 95% CI, 0.66-0.81; p < 0.001). Multivariate logistic regression showed that open gastrectomy, lack of health insurance, age ≥65 years, ASA score ≥ Ⅲ, and tumor size ≥50 mm are independent risk factors for non-achievement of TOO (all p < 0.05). On a sensitivity analysis of TOO's prognostic value using varying definitions of chemotherapy parameters, a stricter definition of chemotherapy resulted in a decrease in the TOO achievement rate from 57.6 to 22.3%. However, the associated reductions in the risk of death and recurrence fluctuated within the ranges of 33-39% and 28-37%, respectively. CONCLUSIONS: TOO is a reliable and stable metric for favorable prognosis in AGC. Optimizing the surgical approach and improving health insurance status may enhance TOO achievement.

9.
Clin Exp Pharmacol Physiol ; 51(4): e13845, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38382550

RESUMO

Abnormalities in vascular smooth muscle cells (VSMCs) are pivotal in the pathogenesis of cardiovascular pathologies such as atherosclerosis and hypertension. Scutellarin (Scu), a flavonoid derived from marigold flowers, exhibits a spectrum of biological activities including anti-inflammatory, antioxidant, antitumor, immunomodulatory and antimicrobial effects. Notably, Scu has demonstrated the capacity to mitigate vascular endothelial damage and prevent atherosclerosis via its antioxidative properties. Nevertheless, the influence of Scu on the formation of VSMC-derived foam cells remains underexplored. In this study, Scu was evidenced to efficaciously attenuate oleic acid (OA)-induced lipid accumulation and the upregulation of adipose differentiation-associated protein Plin2 in a dose- and time-responsive manner. We elucidated that Scu effectively diminishes OA-provoked VSMC foam cell formation. Further, it was established that Scu pretreatment augments the protein expression of LC3B-II and the mRNA levels of Map1lc3b and Becn1, concurrently diminishing the protein levels of the NLRP3 inflammasome compared to the OA group. Activation of autophagy through rapamycin attenuated NLRP3 inflammasome protein expression, intracellular lipid droplet content and Plin2 mRNA levels. Scu also counteracted the OA-induced decrement of LC3B-II levels in the presence of bafilomycin-a1, facilitating the genesis of autophagosomes and autolysosomes. Complementarily, in vivo experiments revealed that Scu administration substantially reduced arterial wall thickness, vessel wall cross-sectional area, wall-to-lumen ratio and serum total cholesterol levels in comparison to the high-fat diet model group. Collectively, our findings suggest that Scu attenuates OA-induced VSMC foam cell formation through the induction of autophagy and the suppression of NLRP3 inflammasome activation.


Assuntos
Apigenina , Aterosclerose , Glucuronatos , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patologia , Músculo Liso Vascular/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Aterosclerose/metabolismo , Autofagia , RNA Mensageiro/metabolismo , Miócitos de Músculo Liso/metabolismo
10.
J Nat Prod ; 87(2): 297-303, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38308643

RESUMO

Three nor-sesquiterpenes, phellinharts A-C (1-3), isolated from Phellinus hartigii, exhibited unprecedented protoilludane and cerapicane-type structures. The structures of compounds 1-3 were elucidated via spectroscopic analysis, quantum chemical calculations, and X-ray diffraction. Potential biogenic pathways involving demethylation, ring cleavage, and rearrangement were proposed. Compounds 1-3 displayed potent anti-hypertrophic activities with low cytotoxicity (CC50 > 50 µM) in rat cardiomyocytes, underscoring their therapeutic potential.


Assuntos
Miócitos Cardíacos , Phellinus , Sesquiterpenos Policíclicos , Sesquiterpenos , Animais , Ratos , Estrutura Molecular , Sesquiterpenos/química
11.
Cell Death Dis ; 15(1): 10, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182579

RESUMO

PARP inhibitors and HDAC inhibitors have been approved for the clinical treatment of malignancies, but acquired resistance of or limited effects on solid tumors with a single agent remain as challenges. Bioinformatics analyses and a combination of experiments had demonstrated the synergistic effects of PARP and HDAC inhibitors in triple-negative breast cancer. A series of novel dual PARP and HDAC inhibitors were rationally designed and synthesized, and these molecules exhibited high enzyme inhibition activity with excellent antitumor effects in vitro and in vivo. Mechanistically, dual PARP and HDAC inhibitors induced BRCAness to restore synthetic lethality and promoted cytosolic DNA accumulation, which further activates the cGAS-STING pathway and produces proinflammatory chemokines through type I IFN-mediated JAK-STAT pathway. Moreover, these inhibitors promoted neoantigen generation, upregulated antigen presentation genes and PD-L1, and enhanced antitumor immunity when combined with immune checkpoint blockade therapy. These results indicated that novel dual PARP and HDAC inhibitors have antitumor immunomodulatory functions in triple-negative breast cancer. Novel dual PARP and HDAC inhibitors induce BRCAness to restore synthetic lethality, activating tumoral IFN signaling via the cGAS-STING pathway and inducing cytokine production, promoting neoantigen generation and presentation to enhance the immune response.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Inibidores de Histona Desacetilases/farmacologia , Janus Quinases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Fatores de Transcrição STAT , Transdução de Sinais , Nucleotidiltransferases/genética
13.
Eur J Pharmacol ; 966: 176345, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38244760

RESUMO

The post-translational modification of cysteine through redox reactions, especially S-sulfhydration, plays a critical role in regulating protein activity, interactions, and spatial arrangement. This review focuses on the impact of protein S-sulfhydration on vascular function and its implications in vascular diseases. Dysregulated S-sulfhydration has been linked to the development of vascular pathologies, including aortic aneurysms and dissections, atherosclerosis, and thrombotic diseases. The H2S signaling pathway and the enzyme cystathionine γ-lyase (CSE), which is responsible for H2S generation, are identified as key regulators of vascular function. Additionally, potential therapeutic targets for the treatment of vascular diseases, such as the H2S donor GYY4137 and the HDAC inhibitor entinostat, are discussed. The review also emphasizes the antithrombotic effects of H2S in regulating platelet aggregation and thrombosis. The aim of this review is to enhance our understanding of the function and mechanism of protein S-sulfhydration modification in vascular diseases, and to provide new insights into the clinical application of this modification.


Assuntos
Aterosclerose , Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/metabolismo , Aterosclerose/tratamento farmacológico , Processamento de Proteína Pós-Traducional , Cistationina gama-Liase/metabolismo
14.
J Hepatol ; 80(5): 764-777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38181823

RESUMO

BACKGROUND & AIMS: Clinical evidence substantiates a link between inflammatory bowel disease, particularly Crohn's disease (CD), and metabolic dysfunction-associated steatotic liver disease (MASLD). This study aims to explore the underlying molecular mechanisms responsible for this association. METHODS: MASLD was induced by administering high-fat and western diets, while inflammatory bowel disease was induced using DSS (dextran sulfate sodium) and the Il10 knockout (KO) mouse model. The investigation into the role of secondary bile acids (SBAs) in ileitis involved employing metagenomic sequencing, conducting metabolomics detection, performing fecal microbiota transplantation, and constructing CD8+ T cell-specific gene knockout mice. RESULTS: In MASLD+DSS and Il10 KO MASLD mice, we observed ileitis characterized by T-cell infiltration and activation in the terminal ileum. This condition resulted in decreased bile acid levels in the portal vein and liver, inhibited hepatic farnesoid X receptor (FXR) activation, and exacerbated MASLD. Metagenomic and metabolomic analysis of ileal contents revealed increased Clostridium proliferation and elevated SBA levels in MASLD-associated ileitis. Experiments using germ-free mice and fecal microbiota transplantation suggested an association between SBA and MASLD-related ileitis. In vitro, SBAs promoted CD8+ T-cell activation via the TGR5, mTOR, and oxidative phosphorylation pathways. In vivo, TGR5 KO in CD8+ T cells effectively alleviated ileitis and reversed the MASLD phenotype. Clinical data further supported these findings, demonstrating a positive correlation between ileitis and MASLD. CONCLUSION: MASLD-induced changes in intestinal flora result in elevated levels of SBAs in the ileum. In the presence of a compromised intestinal barrier, this leads to severe CD8+ T cell-mediated ileitis through the TGR5/mTOR/oxidative phosphorylation signaling pathway. Ileitis-induced tissue damage impairs enterohepatic circulation, inhibits hepatic FXR activation, and exacerbates the MASLD phenotype. IMPACT AND IMPLICATIONS: Our study provides a comprehensive investigation of the interplay and underlying mechanisms connecting ileitis and metabolic dysfunction-associated steatotic liver disease (MASLD). Secondary bile acids produced by intestinal bacteria act as the critical link between MASLD and ileitis. Secondary bile acids exert their influence by disrupting liver lipid metabolism through the promotion of CD8+ T cell-mediated ileitis. In future endeavors to prevent and treat MASLD, it is essential to thoroughly account for the impact of the intestinal tract, especially the ileum, on liver function via the enterohepatic circulation.


Assuntos
Doença de Crohn , Fígado Gorduroso , Ileíte , Camundongos , Animais , Ácidos e Sais Biliares , Interleucina-10 , Linfócitos T CD8-Positivos , Transdução de Sinais/genética , Íleo , Camundongos Knockout , Serina-Treonina Quinases TOR
15.
Med Chem ; 20(1): 40-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37767798

RESUMO

BACKGROUND: Drug-resistant infections kill hundreds of thousands of people globally every year. In previous work, we found that tri-methoxy- and pyridine-substituted imidazoles show strong antibacterial activities. OBJECTIVE: The aim of this work was to investigate the antibacterial activities and bacterial resistances of imidazoles bearing an aromatic heterocyclic, alkoxy, or polycyclic moiety on the central ring. METHODS: Three series of 2-cyclopropyl-5-(5-(6-methylpyridin-2-yl)-2-substituted-1H-imidazol-4- yl)-6-phenylimidazo[2,1-b][1,3,4]thiadiazoles (13a-e, 14a-d, and 15a-f) were synthesized and their antibacterial activity was evaluated. The structures were confirmed by their 1H NMR, 13C NMR, and HRMS spectra. All the synthesized compounds were screened against Gram-positive, Gramnegative, and multidrug-resistant bacterial strains. RESULTS: More than half of the compounds showed moderate or strong antibacterial activity. Among them, compound 13e (MICs = 1-4 µg/mL) showed the strongest activity against Gram-positive and drug-resistant bacteria as well as high selectivity against Gram-negative bacteria. Furthermore, it showed no cytotoxicity against HepG2 cells, even at 100 µM, and no hemolysis at 20 µM. CONCLUSION: These results indicate that compound 13e is excellent candicate for further study as a potential antibacterial agent.


Assuntos
Nitroimidazóis , Tiadiazóis , Humanos , Antibacterianos , Imidazóis/química , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
16.
Prenat Diagn ; 44(2): 167-171, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37749763

RESUMO

OBJECTIVE: To elucidate an etiology in a case with persistent oligohydramnios by prenatal diagnosis and actively treat the case to achieve good prognosis. METHODS: We performed whole exome sequencing (WES) of DNA from the fetus and parents. Serial amnioinfusions were conducted until birth. Pressors were required to maintain normal blood pressure. The infant angiotensin-converting enzyme (ACE) activity, angiotensin II (Ang II, a downstream product of ACE), and compensatory enzymes (CEs) activities were measured. Compensatory enzyme activities in plasma from age-matched healthy controls were also detected. RESULTS: We identified a fetus with a severe ACE mutation prenatally. The infant was born prematurely without pulmonary dysplasia. Hypotension and anuria resolved spontaneously. He had almost no ACE activity, but his Ang II level and CE activity exceeded the upper limit of the normal range and the upper limit of the 95% confidence interval of controls, respectively. His renal function also largely recovered. CONCLUSION: Fetuses with ACE mutations can be diagnosed prenatally through WES. Serial amnioinfusion permits the continuation of pregnancy in fetal ACE deficiency. Compensatory enzymes for defective ACE appeared postnatally. Renal function may be spared by preterm delivery; furthermore, for postnatal vasopressor therapy to begin, improving renal perfusion pressure before nephrogenesis has been completed.


Assuntos
Oligo-Hidrâmnio , Peptidil Dipeptidase A , Gravidez , Recém-Nascido , Masculino , Feminino , Humanos , Peptidil Dipeptidase A/genética , Diagnóstico Pré-Natal , Feto , Oligo-Hidrâmnio/diagnóstico por imagem , Oligo-Hidrâmnio/terapia , Parto Obstétrico
17.
Vascul Pharmacol ; 154: 107251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052330

RESUMO

BACKGROUND: Hypertension is a prevalent cardiovascular disease characterized by elevated blood pressure and increased vascular resistance. HDAC inhibitors have emerged as potential therapeutic agents due to their ability to modulate gene expression and cellular processes. YPX-C-05, a novel hydroxamic acid-based HDAC inhibitor, shows promise in its vasodilatory effects and potential targets for hypertension treatment. In this study, we aimed to elucidate the mechanisms underlying YPX-C-05's vasodilatory effects and explore its therapeutic potential in hypertension. METHODS: To determine the ex vivo vasodilatory effects of YPX-C-05, isolated aortic rings precontracted with phenylephrine were used. We assessed YPX-C-05's inhibitory effects on HDACs and its impact on histone H4 deacetylation levels in endothelial cells. Network pharmacology analysis was employed to predict putative targets of YPX-C-05 for hypertension treatment. To investigate the involvement of the PI3K/Akt/eNOS pathway, we employed enzyme-linked immunosorbent assay and to assess the levels of NO, ET-1, BH2, and BH4 in human umbilical vein endothelial cells. And we also analyzed the mRNA expression of eNOS and ET-1. Furthermore, Western blotting was conducted to quantify the phosphorylated and total Akt and eNOS levels in human umbilical vein endothelial cell lysates following treatment with YPX-C-05. In order to elucidate the vasodilatory mechanism of YPX-C-05, we employed pharmacological inhibitors for evaluation purposes. Furthermore, we evaluated the chronic antihypertensive effects of YPX-C-05 on N-omega-nitro-L-arginine-induced hypertensive mice in an in vivo model. Vascular remodeling was assessed through histological analysis. RESULTS: Our findings demonstrated that YPX-C-05 exerts significant vasodilatory effects in isolated aortic rings precontracted with phenylephrine. Furthermore, YPX-C-05 exhibited inhibitory effects on HDACs and increased histone H4 acetylation in endothelial cells. Network pharmacology analysis predicted YPX-C-05 might activate endothelial eNOS via PI3K/Akt signaling pathway. Inhibition of the PI3K/Akt/eNOS pathway attenuated the vasodilatory effects of YPX-C-05, as evidenced by reduced levels of phosphorylated Akt and eNOS in human umbilical vein endothelial cell lysates. The chronic administration of YPX-C-05 in N-omega-nitro-L-arginine-induced hypertensive mice resulted in significant antihypertensive effects. Histological analysis demonstrated a reduction in vascular remodeling, further supporting the therapeutic potential of YPX-C-05 in hypertension. CONCLUSION: This study demonstrates for the first time that the novel hydroxamic acid-based HDAC inhibitor YPX-C-05 produces significant antihypertensive and vasodilatory effects through the PI3K/Akt/eNOS pathway. Our findings support the developing prospect of YPX-C-05 as a novel antihypertensive drug.


Assuntos
Hipertensão , Proteínas Proto-Oncogênicas c-akt , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Anti-Hipertensivos/farmacologia , Remodelação Vascular , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Histonas/metabolismo , Histonas/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Arginina , Fenilefrina/metabolismo , Fenilefrina/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo
18.
Food Chem ; 438: 138052, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38006698

RESUMO

Walnut oils were obtained by supercritical carbon dioxide extraction (SCB), cold-pressing (CP), hexane extraction (HE), and subcritical butane extraction (SBE), and walnut protein isolates (WPI) from the walnut cakes were performed. The results indicate that SCB has the highest oil yield for walnut oil, which was 62.72%, and the total content of trace nutrients (total tocopherols, total phytosterols, and total phenolic compounds) in SCB-walnut oil was also the highest at 2186.75 mg/kg, approximately 1.05 times higher than CP-walnut oil and 1.21 times higher than SBE-walnut oil. Meanwhile, the treatment of WPI with SCB results in a decrease in ß-Sheet and α-Helix structures and an increase in ß-Turn and Random coil structures. Thereby increasing its oil-holding capacity (OHC) and solubility by approximately 1.16 times and 1.27 times compared to CP, respectively. Interestingly, SCB as a green oil production technology, also has good prospects for retaining WPI functionality characteristics.


Assuntos
Juglans , Juglans/química , Óleos de Plantas/química , Tocoferóis , Antioxidantes/química , Nutrientes
19.
Acta Pharmacol Sin ; 45(3): 545-557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37932403

RESUMO

The matrix glycoprotein thrombospondin-1 (THBS1) modulates nitric oxide (NO) signaling in endothelial cells. A high-salt diet induces deficiencies of NO production and bioavailability, thereby leading to endothelial dysfunction. In this study we investigated the changes of THBS1 expression and its pathological role in the dysfunction of mesenteric artery endothelial cells (MAECs) induced by a high-salt diet. Wild-type rats, and wild-type and Thbs1-/- mice were fed chow containing 8% w/w NaCl for 4 weeks. We showed that a high salt diet significantly increased THBS1 expression and secretion in plasma and MAECs, and damaged endothelium-dependent vasodilation of mesenteric resistance arteries in wild-type animals, but not in Thbs1-/- mice. In rat MAECs, we demonstrated that a high salt environment (10-40 mM) dose-dependently increased THBS1 expression accompanied by suppressed endothelial nitric oxide synthase (eNOS) and phospho-eNOS S1177 production as well as NO release. Blockade of transforming growth factor-ß1 (TGF-ß1) activity by a TGF-ß1 inhibitor SB 431542 reversed THBS1 up-regulation, rescued the eNOS decrease, enhanced phospho-eNOS S1177 expression, and inhibited Smad4 translocation to the nucleus. By conducting dual-luciferase reporter experiments in HEK293T cells, we demonstrated that Smad4, a transcription promoter, upregulated Thbs1 transcription. We conclude that THBS1 contributes to endothelial dysfunction in a high-salt environment and may be a potential target for treatment of high-salt-induced endothelium dysfunction.


Assuntos
Células Endoteliais , Cloreto de Sódio , Humanos , Ratos , Camundongos , Animais , Cloreto de Sódio/metabolismo , Células Endoteliais/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células HEK293 , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatação , Artérias Mesentéricas , Trombospondinas/metabolismo , Óxido Nítrico/metabolismo
20.
Int J Surg ; 110(1): 342-352, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939147

RESUMO

BACKGROUND: Indocyanine green (ICG) fluorescence imaging is effective in increasing the number of lymph node dissections during laparoscopic radical gastrectomy; however, no studies have attempted to explain this phenomenon. METHODS: This study utilized the data from a previous randomized controlled trial (FUGES-012 study) investigating ICG-guided laparoscopic radical gastrectomy performed between November 2018 and July 2019. The Objective Structured Assessments of Technical Skills (OSATS) scoring system was used to grade videos from the ICG and non-ICG groups. Patients with an OSATS score greater than 29 were classified as the high-OSATS population, while those with an OSATS score less than or equal to 29 were classified as the low-OSATS population. RESULTS: A total of 258 patients were included in the modified intention-to-treat analysis: 129 in the ICG group and 129 in the non-ICG group. The OSATS score of the ICG group was higher than that of the non-ICG group (29.6±2.6 vs. 26.6±3.6; P <0.001). The ICG group underwent a significantly higher mean total number of lymph node dissections than the non-ICG group (50.5±15.9 vs. 42.0±10.3; adjusted P <0.001). The group assigned to ICG use, better OSATS (high-OSATS) scores were observed, which correlated with greater D2 lymph node retrieval (54.1±15.0 vs. 47.2±8.7; adjusted P =0.039). Finally, the ICG group had a lower rate of lymph node noncompliance than that of the non-ICG group (31.8 vs. 57.4%; P <0.001). CONCLUSIONS: By applying the ICG fluorescence navigation technique, better OSATS scores were observed, which correlated with greater lymph node retrieval and a lower lymph node noncompliance rate, as recommended for individualized laparoscopic radical gastrectomy.


Assuntos
Laparoscopia , Neoplasias Gástricas , Humanos , Verde de Indocianina , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Excisão de Linfonodo/métodos , Linfonodos/patologia , Laparoscopia/métodos , Gastrectomia/métodos , Biópsia de Linfonodo Sentinela/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA