Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Aging (Albany NY) ; 16(11): 10108-10131, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870261

RESUMO

In all mammals, the basement membrane serves as a pivotal extracellular matrix. Hepatocellular carcinoma (HCC) is a challenge among numerous cancer types shaped by basement membrane-related genes (BMGs). Our research established an innovative prognostic model that is highly accurate in its prediction of HCC prognoses and immunotherapy efficacy to summarize the crucial role of BMGs in HCC. We obtained HCC transcriptome analysis data and corresponding clinical data from The Cancer Genome Atlas (TCGA). To augment our dataset, we incorporated 222 differentially expressed BMGs identified from relevant literature. A weighted gene coexpression network analysis (WGCNA) of 10158 genes demonstrated four modules that were connected to HCC. Additionally, 66 genes that are found at the intersection of BMGs and HCC-related genes were designated as hub HCC-related BMGs. MMP1, ITGA2, P3H1, and CTSA comprise the novel model that was engineered using univariate and multivariate Cox regression analysis. Furthermore, the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) datasets encouraged the BMs model's validity. The overall survival (OS) of individuals with HCC may be precisely predicted in the TCGA and ICGC databases utilizing the BMs model. A nomogram based on the model was created in the TCGA database at similar time, and displayed a favorable discriminating ability for HCC. Particularly, when compared to the patients at an elevated risk, the patients with a low-risk profile presented different tumor microenvironment (TME) and hallmark pathways. Moreover, we discovered that a lower risk score of HCC patients would display a greater response to immunotherapy. Finally, quantitative real-time PCR (qRT-PCR) experiments were used to verify the expression patterns of BMs model. In summary, BMs model demonstrated efficacy in prognosticating the survival probability of HCC patients and their immunotherapeutic responsiveness.


Assuntos
Membrana Basal , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Membrana Basal/patologia , Membrana Basal/metabolismo , Prognóstico , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Masculino , Feminino , Nomogramas , Redes Reguladoras de Genes , Bases de Dados Genéticas , Transcriptoma
2.
Clin Case Rep ; 12(5): e8859, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725929

RESUMO

While adenomyosis is commonly associated with a mild risk of thrombotic complications, the presence of additional thrombophilia factors can increase this risk, particularly in individuals with severe symptoms and elevated CA125 levels.

3.
Cell Death Discov ; 10(1): 246, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777812

RESUMO

Although effective initially, prolonged androgen deprivation therapy (ADT) promotes neuroendocrine differentiation (NED) and prostate cancer (PCa) progression. It is incompletely understood how ADT transcriptionally induces NE genes in PCa cells. CREB1 and REST are known to positively and negatively regulate neuronal gene expression in the brain, respectively. No direct link between these two master neuronal regulators has been elucidated in the NED of PCa. We show that REST mRNA is downregulated in NEPC cell and mouse models, as well as in patient samples. Phenotypically, REST overexpression increases ADT sensitivity, represses NE genes, inhibits colony formation in culture, and xenograft tumor growth of PCa cells. As expected, ADT downregulates REST in PCa cells in culture and in mouse xenografts. Interestingly, CREB1 signaling represses REST expression. In studying the largely unclear mechanism underlying transcriptional repression of REST by ADT, we found that REST is a direct target of EZH2 epigenetic repression. Finally, genetic rescue experiments demonstrated that ADT induces NED through EZH2's repression of REST, which is enhanced by ADT-activated CREB1 signaling. In summary, our study has revealed a key pathway underlying NE gene upregulation by ADT, as well as established novel relationships between CREB1 and REST, and between EZH2 and REST, which may also have implications in other cancer types and in neurobiology.

4.
Front Immunol ; 15: 1352873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440727

RESUMO

Background: Neoadjuvant immunotherapy has demonstrated beneficial outcomes in various cancer types; however, standardized protocols for neoadjuvant immunotherapy in hepatocellular carcinoma (HCC) are currently lacking. This systematic review and meta-analysis aims to investigate the reliability of neoadjuvant immunotherapy's efficacy and safety in the context of HCC. Methods: A systematic search was conducted across PubMed (MEDLINE), EMBASE, the Web of Science, the Cochrane Library, and conference proceedings to identify clinical trials involving resectable HCC and neoadjuvant immunotherapy. Single-arm meta-analyses were employed to compute odds ratios and 95% confidence intervals (CIs). Heterogeneity analysis, data quality assessment, and subgroup analyses based on the type of immunotherapy drugs and combination therapies were performed. This meta-analysis is registered in PROSPERO (identifier CRD42023474276). Results: This meta-analysis included 255 patients from 11 studies. Among resectable HCC patients, neoadjuvant immunotherapy exhibited an overall major pathological response (MPR) rate of 0.47 (95% CI 0.31-0.70) and a pathological complete response (pCR) rate of 0.22 (95% CI 0.14-0.36). The overall objective response rate (ORR) was 0.37 (95% CI 0.20-0.69), with a grade 3-4 treatment-related adverse event (TRAE) incidence rate of 0.35 (95% CI 0.24-0.51). Furthermore, the combined surgical resection rate was 3.08 (95% CI 1.66-5.72). Subgroup analysis shows no significant differences in the efficacy and safety of different single-agent immunotherapies; the efficacy of dual ICIs (Immune Checkpoint Inhibitors) combination therapy is superior to targeted combined immunotherapy and monotherapy, while the reverse is observed in terms of safety. Discussion: Neoadjuvant immunotherapy presents beneficial outcomes in the treatment of resectable HCC. However, large-scale, high-quality experiments are warranted in the future to provide robust data support.


Assuntos
Carcinoma Hepatocelular , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Terapia Neoadjuvante , Reprodutibilidade dos Testes
5.
Res Sq ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37886478

RESUMO

Although effective initially, prolonged androgen deprivation therapy (ADT) promotes neuroendocrine differentiation (NED) and prostate cancer (PCa) progression. It is incompletely understood how ADT transcriptionally induces NE genes in PCa cells. CREB1 and REST are known to positively and negatively regulate neuronal gene expression in the brain, respectively. No direct link between these two master neuronal regulators has been elucidated in the NED of PCa. We show that REST mRNA is downregulated in NEPC cell and mouse models, as well as in patient samples. Phenotypically, REST overexpression increases ADT sensitivity, represses NE genes, inhibits colony formation in culture, and xenograft tumor growth of PCa cells. As expected, ADT downregulates REST in PCa cells in culture and in mouse xenografts. Interestingly, CREB1 signaling represses REST expression. In studying the largely unclear mechanism underlying transcriptional repression of REST by ADT, we found that REST is a direct target of EZH2 epigenetic repression. Finally, genetic rescue experiments demonstrated that ADT induces NED through EZH2's repression of REST, which is enhanced by ADT-activated CREB signaling. In summary, our study has revealed a key pathway underlying NE gene upregulation by ADT, as well as established novel relationships between CREB1 and REST, and between EZH2 and REST, which may also have implications in other cancer types and in neurobiology.

6.
Front Pharmacol ; 14: 1217400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663266

RESUMO

Tumor-associated macrophages (TAMs) are essential components of the immune cell stroma of hepatocellular carcinoma. TAMs originate from monocytic myeloid-derived suppressor cells, peripheral blood monocytes, and kupffer cells. The recruitment of monocytes to the HCC tumor microenvironment is facilitated by various factors, leading to their differentiation into TAMs with unique phenotypes. TAMs can directly activate or inhibit the nuclear factor-κB, interleukin-6/signal transducer and signal transducer and activator of transcription 3, Wnt/ß-catenin, transforming growth factor-ß1/bone morphogenetic protein, and extracellular signal-regulated kinase 1/2 signaling pathways in tumor cells and interact with other immune cells via producing cytokines and extracellular vesicles, thus affecting carcinoma cell proliferation, invasive and migratory, angiogenesis, liver fibrosis progression, and other processes to participate in different stages of tumor progression. In recent years, TAMs have received much attention as a prospective treatment target for HCC. This review describes the origin and characteristics of TAMs and their mechanism of action in the occurrence and development of HCC to offer a theoretical foundation for further clinical research of TAMs.

7.
Cancer Lett ; 571: 216333, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543278

RESUMO

The mechanisms underlying the progression of prostate cancer (PCa) to neuroendocrine prostate cancer (NEPC), an aggressive PCa variant, are largely unclear. Two prominent NEPC phenotypes are elevated NE marker expression and heightened angiogenesis. Identifying the still elusive direct molecular links connecting angiogenesis and neuroendocrine differentiation (NED) is crucial for our understanding and targeting of NEPC. Here we found that histone deacetylase 2 (HDAC2), whose role in NEPC has not been reported, is one of the most upregulated epigenetic regulators in NEPC. HDAC2 promotes both NED and angiogenesis. G protein-coupled receptor kinase 3 (GRK3), also upregulated in NEPC, is a critical promoter for both phenotypes too. Of note, GRK3 phosphorylates HDAC2 at S394, which enhances HDAC2's epigenetic repression of potent anti-angiogenic factor Thrombospondin 1 (TSP1) and master NE-repressor RE1 Silencing Transcription Factor (REST). Intriguingly, REST suppresses angiogenesis while TSP1 suppresses NE marker expression in PCa cells, indicative of their novel functions and their synergy in cross-repressing the two phenotypes. Furthermore, the GRK3-HDAC2 pathway is activated by androgen deprivation therapy and hypoxia, both known to promote NED and angiogenesis in PCa. These results indicate that NED and angiogenesis converge on GRK3-enhanced HDAC2 suppression of REST and TSP1, which constitutes a key missing link between two prominent phenotypes of NEPC.


Assuntos
Quinase 3 de Receptor Acoplado a Proteína G , Histona Desacetilase 2 , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios , Diferenciação Celular , Linhagem Celular Tumoral , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais/genética , Quinase 3 de Receptor Acoplado a Proteína G/genética , Quinase 3 de Receptor Acoplado a Proteína G/metabolismo
8.
Acta Pharm Sin B ; 13(7): 2826-2843, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521867

RESUMO

Aurora kinase A (Aurora-A), a serine/threonine kinase, plays a pivotal role in various cellular processes, including mitotic entry, centrosome maturation and spindle formation. Overexpression or gene-amplification/mutation of Aurora-A kinase occurs in different types of cancer, including lung cancer, colorectal cancer, and breast cancer. Alteration of Aurora-A impacts multiple cancer hallmarks, especially, immortalization, energy metabolism, immune escape and cell death resistance which are involved in cancer progression and resistance. This review highlights the most recent advances in the oncogenic roles and related multiple cancer hallmarks of Aurora-A kinase-driving cancer therapy resistance, including chemoresistance (taxanes, cisplatin, cyclophosphamide), targeted therapy resistance (osimertinib, imatinib, sorafenib, etc.), endocrine therapy resistance (tamoxifen, fulvestrant) and radioresistance. Specifically, the mechanisms of Aurora-A kinase promote acquired resistance through modulating DNA damage repair, feedback activation bypass pathways, resistance to apoptosis, necroptosis and autophagy, metastasis, and stemness. Noticeably, our review also summarizes the promising synthetic lethality strategy for Aurora-A inhibitors in RB1, ARID1A and MYC gene mutation tumors, and potential synergistic strategy for mTOR, PAK1, MDM2, MEK inhibitors or PD-L1 antibodies combined with targeting Aurora-A kinase. In addition, we discuss the design and development of the novel class of Aurora-A inhibitors in precision medicine for cancer treatment.

9.
Front Cell Dev Biol ; 11: 1162344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342230

RESUMO

REST corepressors (RCORs) are the core component of the LSD1/CoREST/HDACs transcriptional repressor complex, which have been revealed differently expressed in various cancers, but the therapeutic and prognostic mechanisms in cancer are still poorly understood. In this study, we analyzed expression, prognostic value, molecular subtypes, genetic alteration, immunotherapy response and drug sensitivity of RCORs in pan-cancer. Clinical correlation, stemness index, immune infiltration and regulatory networks of RCORs in hepatocellular carcinoma (HCC) were detected through TCGA and GSCA database. In-vitro experiments were conducted to explore the role of RCOR1 in HCC cells. The expression of RCORs varied among different cancers, and have prognostic values in several cancers. Cancer subtypes were categorized according to the expression of RCORs with clinical information. RCORs were significantly correlated with immunotherapy response, MSI, drug sensitivity and genetic alteration in pan-cancer. In HCC, RCORs were considered as potential predictor of stemness and also had association with immune infiltration. The ceRNA-TF-kinase regulatory networks of RCORs were constructed. Besides, RCOR1 acts as an oncogene in HCC and promotes the proliferation of HCC cells by inhibiting cell cycle arrest and cell apoptosis. Taken together, our study revealed the potential molecular mechanisms of RCORs in pan-cancer, offering a benchmark for disease-related research.

10.
EMBO Rep ; 24(6): e56390, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37154299

RESUMO

Excessive gluconeogenesis can lead to hyperglycemia and diabetes through as yet incompletely understood mechanisms. Herein, we show that hepatic ZBTB22 expression is increased in both diabetic clinical samples and mice, being affected by nutritional status and hormones. Hepatic ZBTB22 overexpression increases the expression of gluconeogenic and lipogenic genes, heightening glucose output and lipids accumulation in mouse primary hepatocytes (MPHs), while ZBTB22 knockdown elicits opposite effects. Hepatic ZBTB22 overexpression induces glucose intolerance and insulin resistance, accompanied by moderate hepatosteatosis, while ZBTB22-deficient mice display improved energy expenditure, glucose tolerance, and insulin sensitivity, and reduced hepatic steatosis. Moreover, hepatic ZBTB22 knockout beneficially regulates gluconeogenic and lipogenic genes, thereby alleviating glucose intolerance, insulin resistance, and liver steatosis in db/db mice. ZBTB22 directly binds to the promoter region of PCK1 to enhance its expression and increase gluconeogenesis. PCK1 silencing markedly abolishes the effects of ZBTB22 overexpression on glucose and lipid metabolism in both MPHs and mice, along with the corresponding changes in gene expression. In conclusion, targeting hepatic ZBTB22/PEPCK1 provides a potential therapeutic approach for diabetes.


Assuntos
Fígado Gorduroso , Intolerância à Glucose , Hiperglicemia , Resistência à Insulina , Camundongos , Animais , Gluconeogênese/genética , Resistência à Insulina/genética , Fígado/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Glucose/metabolismo , Fígado Gorduroso/metabolismo , Camundongos Endogâmicos C57BL , Hepatócitos/metabolismo
11.
Biomed Chromatogr ; 37(9): e5684, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37194377

RESUMO

Compound Danshen dripping pills (CDDP), a well-known traditional Chinese medicine, is widely used to prevent and treat cardiovascular diseases. CDDP is usually prescribed in combination with clopidogrel (CLP), but the herb-drug interactions are rarely reported. This study evaluated the effects of CDDP on the pharmacokinetics and pharmacodynamics of coadministered CLP, and ensured the safety and efficacy of their usage. The trial design included a single-dose administration and multidose test for 7 consecutive days. Wistar rats received CLP alone or CLP combined with CDDP. After the final dose, plasma samples were collected at various time points, and the active metabolite H4 of CLP was analyzed by ultrafast liquid chromatography coupled with triple quadrupole tandem mass spectrometry. The main pharmacokinetic parameters of Cmax (maximum [or peak] serum concentration), Tmax (peak plasma time), t1/2 (half-time), AUC0-∞ (area under the concentration-time curve from dosing (time 0) to infinite time), and AUC0-t (area under the concentration-time curve from dosing [time 0] to time t) were calculated using the non-compartment model. In addition, prothrombin time, activated partial thromboplastin time, bleeding time, and adenosine diphosphate-induced platelet aggregation were evaluated for anticoagulation and antiplatelet aggregation activity. In this study, we found that CDDP had no significant effect on the metabolism of CLP in rats. In pharmacodynamic studies, the combination group showed significant synergistic antiplatelet activity compared with the CLP or CDDP groups alone. Based on pharmacokinetic and pharmacodynamic results, CDDP and CLP have synergistic effects on antiplatelet aggregation and anticoagulation.

12.
Heliyon ; 9(3): e14219, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938418

RESUMO

Background: Patients who are coinfected with human immunodeficiency virus 1 (HIV) and Mycobacterium tuberculosis (TB) benefit from timely diagnosis and treatment. In the present study frequencies of CD3+, CD4+, and CD8+ T cells among peripheral blood mononuclear cells (PBMCs) of patients in the Kashi region of China infected with HIV, TB, and both HIV and TB (HIV-TB) were investigated to provide a basis for rapid identification of coinfected patients. Methods: A total of 62 patients with HIV, TB, or HIV-TB who were first hospitalized at our institution were included in the study, as were 30 controls. PBMCs were isolated, and the frequencies of CD3+, CD4+, and CD8+ T cells were determined via flow cytometry. Results: The frequency of CD4+ T cells and the CD4/CD8 ratio were significantly lower in the HIV-TB group than in the other three groups. In fever patients the frequency of CD4+ T cells and the CD4/CD8 ratio were significantly lower in the HIV-TB group than in the HIV group and the TB group. In patients who exhibited rapid weight loss there were no significant differences in the frequency of CD4+ T cells or the CD4/CD8 ratio between the groups. The results of treatment were compared in the HIV, TB, and HIV-TB groups after 7 days, and there were obvious improvements in the frequency of CD4+ T cells and the CD4/CD8 ratio. Conclusion: Clinical symptoms and the degree of immune injury can heighten suspicion for HIV-TB coinfection.

13.
Biomedicines ; 11(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979675

RESUMO

For hepatocellular carcinoma (HCC) patients, we attempted to establish a new oxidative stress (OS)-related prognostic model for predicting prognosis, exploring immune microenvironment, and predicting the immunotherapy response. Significantly differently expressed oxidative stress-related genes (DEOSGs) between normal and HCC samples from the Cancer Genome Atlas (TCGA) were screened, and then based on weighted gene coexpression network analysis (WGCNA), HCC-related hub genes were discovered. Based on the least absolute shrinkage and selection operator (LASSO) and cox regression analysis, a prognostic model was developed. We validated the prognostic model's predictive power using an external validation cohort: the International Cancer Genome Consortium (ICGC).Then a nomogram was determined. Furthermore, we also examined the relationship of the risk model and clinical characteristics as well as immune microenvironment. 434 DEOSGs, comprising 62 downregulated and 372 upregulated genes (p < 0.05 and |log2FC| ≥ 1), and 257 HCC-related hub genes were recognized in HCC. Afterward, we built a five-DEOSG (LOX, CYP2C9, EIF2B4, EZH2, and SRXN1) prognostic risk model. Using the nomogram, the risk model was shown to have good prognostic value. Compared to the low risk group, HCC patients with high risk had poorer outcomes, worse pathological grades, and advanced tumor stages (p < 0.05). There were significant increases in LOX, EIF2B4, EZH2, and SRXN1 expression in HCC samples, while CYP2C9 expression was decreased. Finally, Real-time PCR (RT-qPCR) confirmed the mRNA expressions of five genes (CYP2C9, EIF2B4, EZH2, SRXN1, LOX) in HCC cell lines. Our study constructed a prognostic OS-related model with strong predictive power and potential as an immunosuppressive biomarker for HCC leading to improving prediction and providing new insights for HCC immunotherapy.

14.
Molecules ; 28(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677822

RESUMO

Carbohydrate analysis can be used as a standard analysis for quality control of industries of plants, foods and pharmaceuticals. Quantitative 1H NMR spectroscopy (qNMR) is an excellent alternative to chromatography-based mixture analysis. However, the application of qNMR in sugar analysis has rarely been reported. In this study, the performance of qNMR in sugar analysis was investigated and compared with the results from HPLC analysis. A head-to-head comparison of qNMR (internal and external standard methods) versus HPLC (PMP pre-column derivatization HPLC, HPLC-RID and HPLC-ELSD) based on quantitative analysis of four carbohydrates (fructose, glucose, sucrose and maltose) in Yiqi Fumai lyophilized injection (YQFM) is presented. Both assays showed similar performance characteristics, including linearity range, accuracy, precision and recovery, and analysis times of less than 30 min/sample. After methodological validation, both qNMR and HPLC have good accuracy, precision and stability. Indeed, the qNMR method is simple, sensitive and rapid in quantifying the four sugars. By analysis of variance (ANOVA) for sugar content with HPLC and qNMR methods, we demonstrated that the two analytical methods had no significant difference and could be used interchangeably for the quantitative analysis of carbohydrates.


Assuntos
Carboidratos , Imageamento por Ressonância Magnética , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética/métodos , Açúcares
15.
Cancer Immunol Immunother ; 72(6): 1619-1631, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36583750

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) through programmed cell death 1 blockade improve the survival outcomes of patients with advanced esophageal squamous cell carcinoma (ESCC). Recently, the use of neoadjuvant immunotherapy for the treatment of ESCC has been gradually increasing. We aimed to evaluate the efficacy of neoadjuvant treatment of ICIs with chemotherapy and explore tumor microenvironment (TME) immune profiles of ESCC samples during neoadjuvant therapy. METHODS: Patients with previously untreated, resectable, locally advanced ESCC (stage II or III) in Harbin Medical University Cancer Hospital were enrolled. Each patient received two to four cycles of neoadjuvant ICIs combined with chemotherapy before surgical resection. The TME immune profiles of formalin-fixed paraffin-embedded tumor samples at baseline and after surgery were evaluated by multiplex staining and multispectral imaging. RESULTS: In all, 18 patients were enrolled, and all patients received surgery with R0 resection. The postoperative pathological evaluation indicated that 7 (38.9%) patients had a pathological complete response (pCR) and 11 (61.1%) patients had a partial response. The neoadjuvant therapeutic regimens had acceptable side effect profiles. The TME immune profiles at baseline observed higher densities of stroma CD3 + , PD-1 + , and PD-1 + CD3 + cells in pCR patients than in non-pCR patients. Comparing TME immune profiles before and after neoadjuvant treatment, an increase in CD8 + T cells and a decrease in CD163 + CD68 + M2-like macrophage cells were observed after neoadjuvant treatment. CONCLUSIONS: Neoadjuvant ICIs combined with chemotherapy produced a satisfactory treatment response, demonstrating its anti-tumor efficacy in locally advanced ESCC. Further large-scale studies are required to understand the role of tumor immunities and ICIs underlying ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Terapia Neoadjuvante/métodos , Neoplasias Esofágicas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral , Receptor de Morte Celular Programada 1/uso terapêutico , População do Leste Asiático
16.
MedComm (2020) ; 3(4): e185, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36448053

RESUMO

ENKUR was shown as a suppressor in some tumors. However, the biological role of ENKUR on gastric cancer (GC) and its related molecular mechanisms is not clear. Here, we first observed that ENKUR significantly inhibited cell migration, invasion, and metastasis in GC. The molecular basis showed ß-catenin-mediated epithelial-mesenchymal transition (EMT) signaling was inactivated in ENKUR-overexpressing GC cells. In addition, ENKUR knockdown markedly restored cell migration and invasion. Subsequently, ENKUR bound to MYH9 and decreased its protein expression by recruiting E3 ubiquitin ligase FBXW7 to form an ubiquitinated degradation complex. The downregulated MYH9 protein weakened the recruitment of the deubiquitinase USP2 and thus promoted the degradation of ß-catenin protein, which finally suppressed EMT signaling. Finally, the oncogenic transcription factor c-Jun bound to ENKUR promoter and reduced its expression in GC. In clinical samples, decreased ENKUR expression promoted the unfavorable prognosis of GC. Our data proved the vital role of ENKUR on suppressing cell migration, invasion, and metastasis and demonstrated its potential as a therapeutic target for GC.

17.
Cancers (Basel) ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36230524

RESUMO

Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death worldwide. AHSA1 as a chaperone of HSP90 promotes the maturation, stability, and degradation of related cancer-promoting proteins. However, the regulatory mechanism and biological function of AHSA1 in HCC are largely unknown. Actually, we found that AHSA1 was significantly upregulated in HCC tissues and cell lines and was notably correlated with the poor clinical characteristics and prognosis of HCC patients in this study. Furthermore, both in vitro and in vivo, gain- and loss-of-function studies demonstrated that AHSA1 promoted the proliferation, invasion, metastasis, and epithelial-mesenchymal transition (EMT) of HCC. Moreover, the mechanistic study indicated that AHSA1 recruited ERK1/2 and promoted the phosphorylation and inactivation of CALD1, while ERK1/2 phosphorylation inhibitor SCH772984 reversed the role of AHSA1 in the proliferation and EMT of HCC. Furthermore, we demonstrated that the knockdown of CALD1 reversed the inhibition of proliferation and EMT by knocking AHSA1 in HCC. We also illustrated a new molecular mechanism associated with AHSA1 in HCC that was independent of HSP90 and MEK1/2. In summary, AHSA1 may play an oncogenic role in HCC by regulating ERK/CALD1 axis and may serve as a novel therapeutic target for HCC.

18.
Biomed Chromatogr ; 36(11): e5463, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35895507

RESUMO

Salvianolic acids for injection (SAI) is developed from traditional Chinese medicine and approved for the treatment of cardiovascular and cerebrovascular diseases. Clopidogrel is an inhibitor of platelet aggregation, which is often prescribed for patients in combination with SAI. This present study aimed to assess the effects of SAI on the pharmacogenomics, pharmacokinetics, and pharmacodynamics of clopidogrel, thereby ensuring the safety and efficacy of coadministration. In vitro cytochrome P450 isoenzyme assays were performed in human liver microsomes using LC-MS/MS method to assess the metabolites of CYPs substrates. The effects of SAI on the pharmacokinetic and pharmacodynamic behaviors of clopidogrel were investigated in rats. The main pharmacokinetic parameters were analyzed using LC-MS/MS. Prothrombin time, activated partial thromboplastin time, bleeding time, and inhibition of platelet aggregation were measured to evaluate the effects of pharmacodynamics. Our study revealed that the clinical dose of SAI has no significant inhibitory effect on clopidogrel-related liver microsome metabolic CYP450 isoenzymes. Moreover, SAI did not affect the pharmacokinetics of clopidogrel when rats were administered both single and multiple doses. In pharmacodynamic study, SAI has no effect on platelet aggregation rate, prothrombin time, and activated partial thromboplastin time of clopidogrel but could significantly prevent the risk of bleeding caused by clopidogrel.


Assuntos
Isoenzimas , Inibidores da Agregação Plaquetária , Alcenos , Animais , Cromatografia Líquida , Clopidogrel/farmacologia , Sistema Enzimático do Citocromo P-450 , Humanos , Inibidores da Agregação Plaquetária/farmacocinética , Polifenóis , Ratos , Espectrometria de Massas em Tandem
19.
Int J Biol Sci ; 18(10): 4171-4186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844805

RESUMO

CCDC65 is a member of the coiled-coil domain-containing protein family and was only reported in gastric cancer by our group. We first observed that it is downregulated in lung adenocarcinoma based on the TCGA database. Reduced CCDC65 protein was shown as an unfavorable factor promoting the clinical progression in lung adenocarcinoma. Subsequently, CCDC65-/- mice were found possibly dead of hydrocephalus. Compared with the CCDC65+/+ mice, the downregulation of CCDC65 in CCDC65+/- mice significantly increased the formation ability of lung cancer induced by urethane. In the subsequent investigation, we observed that CCDC65 functions as a tumor suppressor repressing cell proliferation in vitro and in vivo. Molecular mechanism showed that CCDC65 recruited E3 ubiquitin ligase FBXW7 to induce the ubiquitination degradation of c-Myc, an oncogenic transcription factor in tumors, and reduced c-Myc binding to ENO1 promoter, which suppressed the transcription of ENO1. In addition, CCDC65 also recruited FBXW7 to degrade ENO1 protein by ubiquitinated modulation. The downregulated ENO1 further reduced the phosphorylation activation of AKT1, which thus inactivated the cell cycle signal. Our data demonstrated that CCDC65 is a potential tumor suppressor by recruiting FBWX7 to suppress c-Myc/ENO1-induced cell cycle signal in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Glicoproteínas , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteína 7 com Repetições F-Box-WD/genética , Técnicas de Inativação de Genes , Glicoproteínas/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
Front Bioeng Biotechnol ; 10: 819148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360405

RESUMO

Mesenchymal stem cells (MSCs) have a variety of unique properties, such as stem cell multipotency and immune regulation, making them attractive for use in cell therapy. Before infusion therapy, MSCs are required to undergo tissue separation, purification, and expansion in vitro for a certain duration. During the process of in vitro expansion of MSCs, the influence of culture time and environment can lead to cell senescence, increased heterogeneity, and function attenuation, which limits their clinical applications. We used a cocktail of three small-molecule compounds, ACY (A-83-01, CHIR99021, and Y-27632), to increase the proliferation activity of MSCs in vitro and reduce cell senescence. ACY inhibited the increase in heterogeneity of MSCs and conserved their differentiation potential. Additionally, ACY maintained the phenotype of MSCs and upregulated the expression of immunomodulatory factors. These results suggest that ACY can effectively improve the quantity and quality of MSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA