Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(11): 5117-5124, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376140

RESUMO

Considering the traditional time-consuming synthesis route and diffusion-limited micropore system of SAPO-11 (i.e., SAPO-11W), a hydroxyl radical assisted method has been developed to prepare hierarchical SAPO-11 within 5 min (i.e., SAPO-11M). Compared to previous reports, the unique contribution is to induce hydroxyl radicals by exposing carbon materials to microwave irradiation in an oxygen-containing atmosphere. Carbon materials play a dual role as mesopore filler and hydroxyl radical initiator. When employed to prepare deoxygenation catalysts for stearic acids, a higher selectivity for C15-C18 and isomers is observed due to the mild acidity of SAPO-11M. The Lewis-rich acidity of SAPO-11M exhibits an electron deficiency to interact with the hydroxyl oxygen atoms and promotes the hydrodeoxygenation of stearic acids with excellent atom economy. These results are important for opening up a new prospect of synthesizing SAPO molecular sieves (e.g., SAPO-11 and SAPO-5) by an efficient and facile route.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA