Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
BMC Med Educ ; 24(1): 142, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355463

RESUMO

BACKGROUND: Infectious diseases are a serious threat to human especially since the COVID-19 outbreak has proved the importance and urgency of their diagnosis and treatment again. Metagenomic next-generation sequencing (mNGS) has been widely used and recognized in clinical and carried out localized testing in hospitals. Increasing the training of mNGS detection technicians can enhance their professional quality and more effectively realize the application value of the hospital platform. METHODS: Based on the initial theoretical understanding and practice of the mNGS platform for localization construction, we have designed a training program to enhance the ability of technicians to detect pathogens by utilizing mNGS, and hence to conduct training practices nationwide. RESULTS: Until August 30, 2022, the page views of online classes have reached 51,500 times and 6 of offline small-scale training courses have been conducted. A total of 67 trainees from 67 hospitals have participated in the training with a qualified rate of 100%. After the training course, the localization platform of 1 participating hospital has been put into use, 2 have added the mNGS localization platform for admission, among which 3 have expressed strong intention of localization. CONCLUSIONS: This study focuses on the training procedures and practical experience of the project which is the first systematic standardized program of mNGS in the world. It solves the training difficulties in the current industry, and effectively promotes the localization construction and application of mNGS in hospitals. It has great development potential in the future and is worth further promotion.


Assuntos
COVID-19 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , China , Surtos de Doenças , Hospitalização , Sensibilidade e Especificidade , Teste para COVID-19
2.
J Tradit Complement Med ; 13(5): 441-453, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693100

RESUMO

Background and aim: Heart failure (HF) is a complex clinical syndrome that represents the end result of several pathophysiologic processes. Despite a dramatic evolution in diagnosis and management of HF, most patients eventually become resistant to therapy. Xin-Li Formula (XLF) is a Chinese medicine formula which shows great potential in the treatment of HF according to our previous studies. The present study was designed to investigate the effects of XLF on HF induced by a combination of hyperlipidemia and myocardial infarction (MI) in rats and reveal the underlying mechanism. Experimental procedure: A rat model of HF induced by hyperlipidemia and MI was established with intragastric administration of XLF and Perindopril. In vitro, CD4+ T cells from mouse spleen and LPS/ATP-stimulated THP-1 macrophages were employed. Results and conclusion: XLF was shown to have markedly protective effects on MI-induced HF with hyperlipidemia in rats, including improvement of left ventricular function, reduction of left ventricular fibrosis and infarct size. Moreover, XLF administration significantly increased the number of Foxp3+ Tregs, and inhibited mTOR phosphorylation and NLRP3 signaling pathway. In vitro, we found that XLF had induced Treg activation via the inhibition of mTOR phosphorylation in CD4+ T cells. Additionally, XLF inhibited NLRP3 inflammasome activation in LPS/ATP-stimulated THP-1 macrophages. Taken together, this study raises the exciting possibility that Xin-Li Formula may benefit HF patients due to its immunomodulatory and anti-inflammatory effects via Treg activation and NLRP3 inflammasome inhibition.

3.
Phytomedicine ; 120: 155041, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678054

RESUMO

BACKGROUND: Psoriasis is an immune-mediated chronic inflammatory skin disease characterized by well-defined erythema and white scales, which affects approximately 2% of the worldwide population and causes long-term distress to patients. Therefore, development of safe and effective therapeutic drugs is imminent. Autophagy, an evolutionarily conserved catabolic process, degrades intracellular constituents to maintain cellular energy homeostasis. Numerous studies have revealed that autophagy is closely related to immune function, such as removal of intracellular bacteria, inflammatory cytokine secretion, antigen presentation, and lymphocyte development. Phytochemicals derived from natural plants are often used to treat psoriasis due to their unique therapeutic properties and favorable safety. So far, a mass of phytochemicals have been proven to be able to activate autophagy and thus alleviate psoriasis. This review aimed to provide directions for finding phytochemicals that target autophagy to treat psoriasis. METHODS: The relevant literatures were collected from classical TCM books and a variety of databases (PubMed, Google Scholar, ScienceDirect, Springer Link, Web of Science and China National Knowledge Infrastructure) till December 2022. Search terms were "Phytochemical", "Psoriasis" and "Autophagy". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS: Phytochemicals treat psoriasis mainly through regulating immune cell function, inhibiting excessive inflammatory response, and reducing oxidative stress. While the role and mechanism of autophagy in the pathogenesis of psoriasis have been confirmed in human trials, most of the evidence for phytochemicals that target autophagy to treat psoriasis comes from animal studies. The research focusing on the role of phytochemical-mediated autophagy in the prevention and treatment of psoriasis is limited, and the definite relationship between phytochemical-regulated autophagy and treatment of psoriasis still deserves further experimental confirmation. CONCLUSIONS: Phytochemicals with autophagic activities will provide new insights into the therapeutic intervention for psoriasis.


Assuntos
Psoríase , Animais , Humanos , Psoríase/tratamento farmacológico , Autofagia , Pele , China , Bases de Dados Factuais
4.
Front Oncol ; 13: 1209799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637057

RESUMO

Lung adenosquamous carcinoma (ASC) is a rare heterogeneous tumor containing two distinct components of adenocarcinoma (ADC) and squamous cell carcinoma (SQCC). The limited biopsy sampling of the primary tumor might have overlooked either the ADC component or the SQCC component, resulting in a misdiagnosis of pure histology. Genotyping for driver mutations is now routinely performed in clinical settings to identify actionable oncogenic mutations and gene arrangements. Additionally, somatic mutations can potentially serve as a marker of clonal relationships. We report a rare case of ASC lung cancer, in which metastases were identified as ADC, while the primary was initially diagnosed as SQCC based on a fibrobronchoscope brush biopsy. The primary and metastatic tumors shared ALK rearrangement and other mutations support they were derived from a single clone origin. Our hypothesis is that the primary tumor contained a minor component of ADC that was not present in the histologic sections of lung biopsy. After sequential ALK-tyrosine kinase inhibitor (TKI) targeted therapy, both the patient's primary lung tumor and the site of metastatic subcutaneous nodules decreased in size, with the metastatic sites demonstrating more noticeable shrinkage. However, after 11 months of targeted therapy, the patient was found to be resistant to ALK-TKIs. Subsequently, the patient's respiratory status deteriorated rapidly, and a cycle of immunotherapy and chemotherapy did not show efficacy. To the best of our knowledge, this is a very rare case of lung ASC, disseminated metastasizing, with distinct morphology between the primary and metastases. Different therapeutic effects of ALK-TKIs were observed in two different morphological sites, with the metastatic cutaneous lesions shrinking more significantly than the primary lung lesions, though they both harbor the same EML4-ALK rearrangement. This case may provide diagnostic and therapeutic insights into lung ASC.

5.
J Dermatol Sci ; 111(3): 101-108, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37543503

RESUMO

BACKGROUND: Psoriasis is an immune-mediated inflammatory skin disease. Psoriasis severity evaluation is important for clinicians in the assessment of disease severity and subsequent clinical decision making. However, no objective biomarker is available for accurately evaluating disease severity in psoriasis. OBJECTIVE: To define and compare biomarkers of disease severity and progression in psoriatic skin. METHODS: We performed proteome profiling to study the proteins circulating in the serum from patients with psoriasis, psoriatic arthritis and ankylosing spondylitis, and transcriptome sequencing to investigate the gene expression in skin from the same cohort. We then used machine learning approaches to evaluate different biomarker candidates across several independent cohorts. In order to reveal the cell-type specificity of different biomarkers, we also analyzed a single-cell dataset of skin samples. In-situ staining was applied for the validation of biomarker expression. RESULTS: We identified that the peptidase inhibitor 3 (PI3) was significantly correlated with the corresponding local skin gene expression, and was associated with disease severity. We applied machine learning methods to confirm that PI3 was an effective psoriasis classifier, Finally, we validated PI3 as psoriasis biomarker using in-situ staining and public datasets. Single-cell data and in-situ staining indicated that PI3 was specifically highly expressed in keratinocytes from psoriatic lesions. CONCLUSION: Our results suggest that PI3 may be a psoriasis-specific biomarker for disease severity and hyper-keratinization.

6.
J Nat Med ; 77(4): 712-720, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37306932

RESUMO

Psoriasis is a chronic inflammatory skin disorder characterized by abnormal keratinocytes proliferation and multiple immune cells infiltration in the dermis and epidermis. Although most psoriasis-related researches have been concentrated on the interleukin-23 (IL-23)/interleukin-17 (IL-17) axis, new data suggest that keratinocytes also play a pivotal role in psoriasis. Previously, we found that punicalagin (PUN), a bioactive ellagitannin extracted from Pericarpium Granati (the pericarpium of Punica granatum L.), exerts a therapeutic effect on psoriasis. However, the underlying mechanism, especially its potential modulatory effect on keratinocytes, remains obscure. Our study aims to reveal the potential regulatory effect and its underlying cellular mechanism of PUN on the hyperproliferation of keratinocytes. We used tumor necrosis factor α (TNF-α), IL-17A and interleukin-6 (IL-6) to induce abnormal proliferation of HaCaT cells (Human Keratinocytes Cells) in vitro. Then, we evaluated the effects of PUN through MTT assay, EdU staining and cell cycle detection. Finally, we explored the underlying cellular mechanisms of PUN via RNA-sequencing, WB in vitro and in vivo. Here, we found that PUN can directly and dose-dependently decrease TNF-α, IL-17A and IL-6-induced abnormal proliferation of HaCaT cells in vitro. Mechanically, PUN suppresses the hyperproliferation of keratinocytes through repressing S-phase kinase-associated protein 2 (SKP2) expression in vitro and in vivo. Moreover, overexpression of SKP2 can partly abolish PUN-mediated inhibition of aberrantly proliferative keratinocytes. These results illustrate that PUN can reduce the severity of psoriasis through directly repressing SKP2-mediated abnormal proliferation of keratinocytes, which gives new insight into the therapeutic mechanism of PUN on psoriasis. Moreover, these findings imply that PUN might be a promising drug candidate for the treatment of psoriasis.


Assuntos
Taninos Hidrolisáveis , Psoríase , Humanos , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/uso terapêutico , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Interleucina-17/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Queratinócitos , Psoríase/tratamento farmacológico , Psoríase/patologia , Proliferação de Células
7.
Cell Prolif ; 56(10): e13450, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36938980

RESUMO

The global pandemic of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an once-in-a-lifetime public health crisis. Among hundreds of millions of people who have contracted with or are being infected with COVID-19, the question of whether COVID-19 infection may cause long-term health concern, even being completely recovered from the disease clinically, especially immune system damage, needs to be addressed. Here, we performed seven-chain adaptome immune repertoire analyses on convalescent COVID-19 patients who have been discharged from hospitals for at least 6 months. Surprisingly, we discovered lymphopenia, reduced number of unique CDR3s, and reduced diversity of the TCR/BCR immune repertoire in convalescent COVID-19 patients. In addition, the BCR repertoire appears to be activated, which is consistent with the protective antibody titres, but serological experiments reveal significantly lower IL-4 and IL-7 levels in convalescent patients compared to those in healthy controls. Finally, in comparison with convalescent patients who did not receive post-hospitalization rehabilitation, the convalescent patients who received post-hospitalization rehabilitation had attenuated immune repertoire abnormality, almost back to the level of healthy control, despite no detectable clinic demographic difference. Overall, we report the potential long-term immunological impairment for COVID-19 infection, and correction of this impairment via post-hospitalization rehabilitation may offer a new prospect for COVID-19 recovery strategy.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Imunização Passiva/métodos , Pacientes , Hospitalização
8.
J Ethnopharmacol ; 307: 116091, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36592823

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qidan Tiaozhi capsule (QD), a traditional Chinese medicine, has been used to treat metabolic syndrome for over a decade. However, the mechanism of QD in the treatment of metabolic syndrome is still unknown. AIM OF THE STUDY: Growing studies demonstrate that impaired mitophagy is one of the important causes of metabolic syndrome. Thus, this research aims to investigate the mechanism of mitophagy in the QD treatment of metabolic syndrome. MATERIALS AND METHODS: Network pharmacology and molecular docking were used to probe the mechanism of QD treatment of metabolic syndrome. In an oleic acid-induced cell model, glucose consumption and uptake capacity, triglyceride (TG), total cholesterol (TC), malonaldehyde (MDA), superoxide dismutase (SOD) and ROS levels, and mitochondrial membrane potential (MMP) were examined. mRFP-GFP-LC3 adenovirus and GFP-LC3 lentivirus were used to examine the effect of QD on mitophagy. The IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were also determined. What's more, the PINK1 gene was silenced to verify the above findings. In a high-fat diet-fed mouse model, body weight, organ indexes, OGTT, ITT, HOMA-IR, insulin sensitivity, serum MDA, SOD, TC, TG, LDL-C and HDL-C, hepatic TC, TG, LDL-C and HDL-C levels, hepatic steatosis, and IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were investigated. RESULTS: Results from network pharmacology and molecular docking suggested that QD might suppress oxidative stress to improve metabolic syndrome. In an oleic acid-induced cell model, compared with the model group, enhanced glucose consumption and uptake ability, inhibited intracellular lipid accumulation, TC, TG, MDA and ROS levels, and increased SOD level and MMP were found in QD groups. And mitophagy levels, IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were promoted. Interestingly, PINK1 silencing reversed the therapeutic action of QD on oleic acid-induced cells. In high-fat diet-fed mice, inhibited body weight, abdominal fat indexes, liver indexes, HOMA-IR, serum and hepatic TC, TG and LDL-C, serum MDA and hepatic steatosis, and increased insulin sensitivity, serum and hepatic HDL-C, serum SOD, and activated IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were found in QD groups. CONCLUSION: QD activates AMPK/PINK1-Parkin-mediated mitophagy to suppress oxidative stress to treat metabolic syndrome.


Assuntos
Medicamentos de Ervas Chinesas , Fígado Gorduroso , Resistência à Insulina , Síndrome Metabólica , Mitofagia , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , LDL-Colesterol , Síndrome Metabólica/tratamento farmacológico , Mitofagia/efeitos dos fármacos , Simulação de Acoplamento Molecular , Ácido Oleico/farmacologia , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos , Ubiquitina-Proteína Ligases/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
9.
Diagn Cytopathol ; 51(3): 182-190, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36422056

RESUMO

INTRODUCTION: Cytopathology is an important part of pathology that is used to diagnose disease on the cellular level. The application of the cell block (CB) technique plays a vital role in cytological diagnosis, as blocks and slides can be further used for special stains, immunohistochemistry (IHC), and molecular pathological analysis. Several methods for making CBs have been reported, but their procedures and cellular yield are still deemed unsatisfactory. In this article, we used gellan gum (GG) as an adjuvant for CBs, which resulted in higher cellular yield with simpler procedures. METHODS: CBs were prepared by using GG, copper sulfate, plasma/thrombin, or pregelatinized starch methods. The procedures of each of these four methods were then compared. CB sections were stained with hematoxylin and eosin (H&E), and the background and morphological features seen by H&E staining were compared. A preliminary IHC and fluorescence in situ hybridization (FISH) study was performed using cytology specimens from eleven and five cases, respectively. The expression of immunocomplex by IHC and the molecular signals detected by FISH were compared in CB sections made by the four methods and a section derived from the biopsy specimen block from the same patient. Feulgen staining, Alcian blue staining, and Masson trichrome staining were performed on the CB sections from 3 cases of pleural fluid. The cellular yield of CB sections from 83 cases according to the four methods was compared using NDP analysis software. RESULTS: The results demonstrated that sections derived from CBs made with GG had a clear background and good morphological features by H&E staining. The expression of immunocomplex by IHC and the molecular signals of FISH detection in the sections from CBs made by GG were accurately located just as those in biopsy sections from the same patient. The DNA, acidic mucus, and fibrin could be clearly identified through special stains in the CB sections. The procedures involved in the GG method were easily controllable and the coagulated gel increased the ease by which the CB was embedded and sectioned. Specifically, sections from CBs made by the GG method contained higher cellular yield because cells could be concentrated on the bottom of the gel after centrifugation. CONCLUSION: This novel method for making CBs is a practical, simple method that can result in higher cellular yield. This method is therefore worth promoting in clinical applications.


Assuntos
Citodiagnóstico , Humanos , Citodiagnóstico/métodos , Hibridização in Situ Fluorescente , Imuno-Histoquímica , Biópsia
10.
Clin Transl Med ; 12(12): e976, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536476

RESUMO

OBJECTIVES: The precise pathogenesis of psoriasis remains incompletely explored. We aimed to better understand the underlying mechanisms of psoriasis, using a systems biology approach based on transcriptomics and microbiome profiling. METHODS: We collected the skin tissue biopsies and swabs in both lesional and non-lesional skin of 13 patients with psoriasis, 15 patients with psoriatic arthritis and healthy skin from 12 patients with ankylosing spondylitis. To study the similarities and differences in the molecular profiles between these three conditions, and the associations between the host defence and microbiota composition, we performed high-throughput RNA-sequencing to quantify the gene expression profile in tissues. The metagenomic composition of 16S on local skin sites was quantified by clustering amplicon sequences and counted into operational taxonomic units. We further analysed associations between the transcriptome and microbiome profiling. RESULTS: We found that lesional and non-lesional samples were remarkably different in terms of their transcriptome profiles. The functional annotation of differentially expressed genes showed a major enrichment in neutrophil activation. By using co-expression gene networks, we identified a gene module that was associated with local psoriasis severity at the site of biopsy. From this module, we found a 'core' set of genes that was functionally involved in neutrophil activation, epidermal cell differentiation and response to bacteria. Skin microbiome analysis revealed that the abundances of Enhydrobacter, Micrococcus and Leptotrichia were significantly correlated with the genes in core network. CONCLUSIONS: We identified a core gene network that associated with local disease severity and microbiome composition, involved in the inflammation and hyperkeratinization in psoriatic skin.


Assuntos
Multiômica , Psoríase , Humanos , Psoríase/genética , Pele/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
11.
Vaccines (Basel) ; 10(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36298618

RESUMO

BACKGROUND: Real-world evidence on the effectiveness of inactivated vaccines against the Delta and Omicron (BA.2.38) variants remains scarce. METHODS: A retrospective cohort study was conducted to estimate the adjusted vaccine effectiveness (aVE) of one, two, and three doses of inactivated vaccines in attenuating pneumonia, severe COVID-19, and the duration of viral shedding in Delta and Omicron cases using modified Poisson and linear regression as appropriate. RESULTS: A total of 561 COVID-19 cases were included (59.2% Delta and 40.8% Omicron). In total, 56.4% (184) of Delta and 12.0% (27) of Omicron cases had COVID-19 pneumonia. In the two-dose vaccinated population, 1.4% of Delta and 89.1% of Omicron cases were vaccinated for more than 6 months. In Delta cases, the two-dose aVE was 52% (95% confidence interval, 39-63%) against pneumonia and 61% (15%, 82%) against severe disease. Two-dose vaccination reduced the duration of viral shedding in Delta cases, but not in booster-vaccinated Omicron cases. In Omicron cases, three-dose aVE was 68% (18%, 88%) effective against pneumonia, while two-dose vaccination was insufficient for Omicron. E-values were calculated, and the E-values confirmed the robustness of our findings. CONCLUSIONS: In Delta cases, two-dose vaccination within 6 months reduced pneumonia, disease severity, and the duration of viral shedding. Booster vaccination provided a high level of protection against pneumonia with Omicron and should be prioritized.

12.
Front Immunol ; 13: 937539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159864

RESUMO

Metabolic status and gut microecology are implicated in psoriasis. Methotrexate (MTX) is usually the first-line treatment for this disease. However, the relationship between MTX and host metabolic status and the gut microbiota is unclear. This study aimed to characterize the features of blood metabolome and gut microbiome in patients with psoriasis after treatment with MTX. Serum and stool samples were collected from 15 patients with psoriasis. Untargeted liquid chromatography-mass spectrometry and metagenomics sequencing were applied to profile the blood metabolome and gut microbiome, respectively. We found that the response to MTX varied according to metabolomic and metagenomic features at baseline; for example, patients who had high levels of serum nutrient molecular and more enriched gut microbiota had a poor response. After 16 weeks of MTX, we observed a reduction in microbial activity pathways, and patients with a good response showed more microbial activity and less biosynthesis of serum fatty acid. We also found an association between the serum metabolome and the gut microbiome before intervention with MTX. Carbohydrate metabolism, transporter systems, and protein synthesis within microbes were associated with host metabolic clusters of lipids, benzenoids, and organic acids. These findings suggest that the metabolic status of the blood and the gut microbiome is involved in the effectiveness of MTX in psoriasis, and that inhibition of symbiotic intestinal microbiota may be one of the mechanisms of action of MTX. Prospective studies in larger sample sizes are needed to confirm these findings.


Assuntos
Microbioma Gastrointestinal , Psoríase , Ácidos Graxos , Microbioma Gastrointestinal/fisiologia , Humanos , Lipídeos , Metaboloma , Metotrexato/uso terapêutico , Estudos Prospectivos , Psoríase/tratamento farmacológico , RNA Ribossômico 16S
13.
Front Pharmacol ; 13: 817526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153790

RESUMO

Psoriasis is a chronic and inflammatory skin disorder characterized by inflammation and epidermal hyperplasia. Punicalagin (PUN) is a main active ingredient of pomegranate (Punica granatum L.) peel with multiple biological activities, such as antibacterial, antioxidant and anti-tumor effects. However, the potential effect of PUN on psoriasis remains unknown. In this study, we want to investigate the pharmacological effect of PUN on psoriasis by using imiquimod (IMQ)-induced psoriatic mice model in vivo and tumor necrosis factor a (TNF-α) and interleukin-17A (IL-17A)-stimulated HaCaT cells in vitro. Our results showed that PUN can effectively alleviate the severity of psoriasis-like symptoms. Mechanistically, PUN potently suppresses the aberrant upregulation of interleukin-1ß (IL-1ß) and subsequent IL-1ß-mediated inflammatory cascade in keratinocytes by inhibiting the nuclear factor kappa B (NF-κB) activation and cleaved caspase-1 expression in vitro and in vivo. Taken together, our findings indicate that PUN can relieve psoriasis by repressing NF-κB-mediated IL-1ß transcription and caspase-1-regulated IL-1ß secretion, which provide evidence that PUN might represent a novel and promising candidate for the treatment of psoriasis.

14.
Cell Prolif ; 54(11): e13137, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34590363

RESUMO

Pyroptosis, which is characterized by gasdermin family protein-mediated pore formation, cellular lysis and the release of pro-inflammatory cytokines, is a form of programmed cell death associated with intracellular pathogens-induced infection. However, emerging evidence indicates that pyroptosis also contributes to sterile inflammation. In this review, we will first illustrate the biological process of pyroptosis. Then, we will focus on the pathogenic effects of pyroptosis on multiple noninfectious disorders. At last, we will characterize several specific pyroptotic inhibitors targeting the pyroptotic signalling pathway. These data demonstrate that pyroptosis plays a prominent role in sterile diseases, thereby providing a promising approach to the treatment of noninfective inflammatory disorders.


Assuntos
Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Piroptose/efeitos dos fármacos , Piroptose/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Humanos , Inflamassomos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças não Transmissíveis/tratamento farmacológico
15.
Front Cell Dev Biol ; 9: 686820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414181

RESUMO

Metabolic disorders include metabolic syndrome, obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular diseases. Due to unhealthy lifestyles such as high-calorie diet, sedentary and physical inactivity, the prevalence of metabolic disorders poses a huge challenge to global human health, which is the leading cause of global human death. Mitochondrion is the major site of adenosine triphosphate synthesis, fatty acid ß-oxidation and ROS production. Accumulating evidence suggests that mitochondrial dysfunction-related oxidative stress and inflammation is involved in the development of metabolic disorders. Mitophagy, a catabolic process, selectively degrades damaged or superfluous mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial function. It is considered to be one of the major mechanisms responsible for mitochondrial quality control. Growing evidence shows that mitophagy can prevent and treat metabolic disorders through suppressing mitochondrial dysfunction-induced oxidative stress and inflammation. In the past decade, in order to expand the range of pharmaceutical options, more and more phytochemicals have been proven to have therapeutic effects on metabolic disorders. Many of these phytochemicals have been proved to activate mitophagy to ameliorate metabolic disorders. Given the ongoing epidemic of metabolic disorders, it is of great significance to explore the contribution and underlying mechanisms of mitophagy in metabolic disorders, and to understand the effects and molecular mechanisms of phytochemicals on the treatment of metabolic disorders. Here, we investigate the mechanism of mitochondrial dysfunction in metabolic disorders and discuss the potential of targeting mitophagy with phytochemicals for the treatment of metabolic disorders, with a view to providing a direction for finding phytochemicals that target mitophagy to prevent or treat metabolic disorders.

16.
Front Pharmacol ; 12: 670151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122092

RESUMO

Background: Metabolic syndrome is characterized by central obesity, hyperglycemia and hyperlipidemia. Insulin resistance is the leading risk factor for metabolic syndrome. Kun-Dan decoction (KD), a traditional Chinese medicine, has been applied to treat patients with metabolic syndrome for over ten years. It is increasingly recognized that autophagy deficiency is the key cause of metabolic syndrome. Therefore, we aimed to explore whether KD can activate autophagy to improve metabolic syndrome. Methods: Network pharmacology was used to explore the underlying mechanism of KD in the treatment of metabolic syndrome. The high-fat diet-fed rats and oleic acid-induced LO2 cells were employed in our study. Oral glucose tolerance test and insulin tolerance test, obesity and histological examination, serum cholesterol, triglyceride, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity in high-fat diet-fed rats were analyzed. Furthermore, the protein expressions of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), phospho-AMPK, mammalian target of rapamycin (mTOR), phospho-mTOR, p62, autophagy related protein (Atg) 5, Atg7, Atg12, Atg13, Atg16L1 and microtubule-associated protein 1A/1B-light chain 3 (LC3)-Ⅱ/Ⅰ were examined in rats and LO2 cells. Moreover, autophagy activator rapamycin and inhibitor 3-methyladenine, and small interfering RNA against Atg7 were utilized to verify the role of autophagy in the treatment of metabolic syndrome by KD in oleic acid-induced LO2 cells. Results: Results from network pharmacology indicated that targeted insulin resistance might be the critical mechanism of KD in the treatment of metabolic syndrome. We found that KD significantly suppressed obesity, serum cholesterol, triglyceride and LDL-C levels and increased serum HDL-C level in high-fat diet-fed rats. Furthermore, KD enhanced insulin sensitivity and attenuated HOMA-IR in high-fat diet-fed rats. Western blot showed that KD could enhance autophagy to increase the insulin sensitivity of high-fat diet-fed rats and oleic acid-induced LO2 cells. Furthermore, 3-methyladenine and small interfering RNA against Atg7 could reverse the protective effect of KD on LO2 cells. However, rapamycin could cooperate with KD to enhance autophagic activation to increase insulin sensitivity in LO2 cells. Conclusion: The induction of autophagy may be the major mechanism for KD to improve insulin resistance and metabolic syndrome.

17.
Front Immunol ; 12: 630358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746967

RESUMO

N6-methyladenosine (m6A) modification, the addition of a methylation decoration at the position of N6 of adenosine, is one of the most prevalent modifications among the over 100 known chemical modifications of RNA. Numerous studies have recently characterized that RNA m6A modification functions as a critical post-transcriptional regulator of gene expression through modulating various aspects of RNA metabolism. In this review, we will illustrate the current perspectives on the biological process of m6A methylation. Then we will further summarize the vital modulatory effects of m6A modification on immunity, viral infection, and autoinflammatory disorders. Recent studies suggest that m6A decoration plays an important role in immunity, viral infection, and autoimmune diseases, thereby providing promising biomarkers and therapeutic targets for viral infection and autoimmune disorders.


Assuntos
Imunidade Adaptativa , Adenina/análogos & derivados , Doenças Autoimunes/genética , Imunidade Inata , Processamento Pós-Transcricional do RNA , Adenina/metabolismo , Células Dendríticas/fisiologia , Humanos , Metilação , Viroses/genética
18.
Clin Transl Immunology ; 9(10): e1186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33033617

RESUMO

The gasdermins, family of pore-forming proteins, are emerging key regulators of infection, autoinflammation and antitumor immunity. Multiple studies have recently characterised their crucial roles in driving pyroptosis, a lytic pro-inflammatory type of cell death. Additionally, gasdermins also act as key effectors of NETosis, secondary necrosis and apoptosis. In this review, we will address current understanding of the mechanisms of gasdermin activation and further describe the protective and detrimental roles of gasdermins in host defence and autoinflammatory diseases. These data suggest that gasdermins play a prominent role in innate immunity and autoinflammatory disorders, thereby providing potential new therapeutic avenues for the treatment of infection and autoimmune disease.

19.
Cell Prolif ; 53(1): e12698, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31588640

RESUMO

Advances in transcriptome sequencing have revealed that the genome fraction largely encodes for thousands of non-coding RNAs. Long non-coding RNAs (lncRNAs), which are a class of non-protein-coding RNAs longer than approximately 200 nucleotides in length, are emerging as key epigenetic regulators of gene expression recently. Intensive studies have characterized their crucial roles in cutaneous biology and diseases. In this review, we address the promotive or suppressive effects of lncRNAs on cutaneous physiological processes. Then, we focus on the pathogenic role of dysfunctional lncRNAs in a variety of proliferative skin diseases. These evidences suggest that lncRNAs have indispensable roles in the processes of skin biology. Additionally, lncRNAs might be promising biomarkers and therapeutic targets for cutaneous disorders.


Assuntos
Proliferação de Células , RNA Longo não Codificante/metabolismo , Dermatopatias/metabolismo , Pele/metabolismo , Animais , Humanos , Pele/patologia , Dermatopatias/patologia
20.
Front Pharmacol ; 10: 1193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649547

RESUMO

Metabolic syndrome, characterized by central obesity, hypertension, and hyperlipidemia, increases the morbidity and mortality of cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and other metabolic diseases. It is well known that insulin resistance, especially hepatic insulin resistance, is a risk factor for metabolic syndrome. Current research has shown that hepatic fatty acid accumulation can cause hepatic insulin resistance through increased gluconeogenesis, lipogenesis, chronic inflammation, oxidative stress and endoplasmic reticulum stress, and impaired insulin signal pathway. Mitochondria are the major sites of fatty acid ß-oxidation, which is the major degradation mechanism of fatty acids. Mitochondrial dysfunction has been shown to be involved in the development of hepatic fatty acid-induced hepatic insulin resistance. Mitochondrial autophagy (mitophagy), a catabolic process, selectively degrades damaged mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial dynamics and function. Therefore, mitophagy can promote mitochondrial fatty acid oxidation to inhibit hepatic fatty acid accumulation and improve hepatic insulin resistance. Here, we review advances in our understanding of the relationship between mitophagy and hepatic insulin resistance. Additionally, we also highlight the potential value of mitophagy in the treatment of hepatic insulin resistance and metabolic syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA