Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
ACS Synth Biol ; 12(10): 3114-3123, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722085

RESUMO

Streptomycetes have a strong ability to produce a vast array of bioactive natural products (NPs) widely used in agriculture and veterinary/human medicine. The recently developed CRISPR/Cas9-based genome editing tools have greatly facilitated strain improvement for target NP overproduction as well as novel NP discovery in Streptomyces. However, CRISPR/Cas9 shows high toxicity to the host, limiting its application in many Streptomyces strains with a low DNA transformation efficiency. In this study, we developed a low-toxicity CRISPR/Cas9D10A nickase (nCas9)-based genome editing tool in the model strain Streptomyces coelicolor M145. We showed that in the presence of both targeting sgRNA and Cas proteins, utilization of nCas9 instead of Cas9 significantly reduced the toxicity to the host and greatly enhanced cell survival. Using this tool, we achieved deletion of single genes and gene clusters with efficiencies of 87-100 and 63-87%, and simultaneous deletion of two genes or gene clusters with efficiencies of 47 and 43%, respectively. The editing efficiency of nCas9 is comparable to that of the Cas9-mediated editing tool. Finally, the nCas9-based editing tool was successfully applied for genome editing in the industrial rapamycin-producing strain Streptomyces rapamycinicus, in which CRISPR/Cas9 cannot work well. We achieved the deletion of three tested genes with an efficiency of 27.2-30%. Collectively, the CRISPR/nCas9-based editing tool offers a convenient and efficient genetic modification system for the engineering of streptomycetes, particularly those with low DNA transformation efficiency.


Assuntos
Actinomycetales , Streptomyces , Humanos , Edição de Genes , Sistemas CRISPR-Cas/genética , Desoxirribonuclease I/genética , RNA Guia de Sistemas CRISPR-Cas , Streptomyces/genética , Streptomyces/metabolismo , DNA , Actinomycetales/metabolismo
3.
Nat Commun ; 14(1): 1827, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005419

RESUMO

Several groups of bacteria have complex life cycles involving cellular differentiation and multicellular structures. For example, actinobacteria of the genus Streptomyces form multicellular vegetative hyphae, aerial hyphae, and spores. However, similar life cycles have not yet been described for archaea. Here, we show that several haloarchaea of the family Halobacteriaceae display a life cycle resembling that of Streptomyces bacteria. Strain YIM 93972 (isolated from a salt marsh) undergoes cellular differentiation into mycelia and spores. Other closely related strains are also able to form mycelia, and comparative genomic analyses point to gene signatures (apparent gain or loss of certain genes) that are shared by members of this clade within the Halobacteriaceae. Genomic, transcriptomic and proteomic analyses of non-differentiating mutants suggest that a Cdc48-family ATPase might be involved in cellular differentiation in strain YIM 93972. Additionally, a gene encoding a putative oligopeptide transporter from YIM 93972 can restore the ability to form hyphae in a Streptomyces coelicolor mutant that carries a deletion in a homologous gene cluster (bldKA-bldKE), suggesting functional equivalence. We propose strain YIM 93972 as representative of a new species in a new genus within the family Halobacteriaceae, for which the name Actinoarchaeum halophilum gen. nov., sp. nov. is herewith proposed. Our demonstration of a complex life cycle in a group of haloarchaea adds a new dimension to our understanding of the biological diversity and environmental adaptation of archaea.


Assuntos
Halobacteriaceae , Streptomyces , Hifas/genética , Proteômica , Filogenia , RNA Ribossômico 16S/genética , Streptomyces/genética , Halobacteriaceae/genética , Esporos , Diferenciação Celular , Análise de Sequência de DNA , China
4.
J Biol Chem ; 291(51): 26443-26454, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27875313

RESUMO

GlnR, an OmpR-like orphan two-component system response regulator, is a master regulator of nitrogen metabolism in the genus Streptomyces In this work, evidence that GlnR is also directly involved in the regulation of antibiotic biosynthesis is provided. In the model strain Streptomyces coelicolor M145, an in-frame deletion of glnR resulted in markedly increased actinorhodin (ACT) production but reduced undecylprodigiosin (RED) biosynthesis when exposed to R2YE culture medium. Transcriptional analysis coupled with DNA binding studies revealed that GlnR represses ACT but activates RED production directly via the pathway-specific activator genes actII-ORF4 and redZ, respectively. The precise GlnR-binding sites upstream of these two target genes were defined. In addition, the direct involvement of GlnR in antibiotic biosynthesis was further identified in Streptomyces avermitilis, which produces the important anthelmintic agent avermectin. We found that S. avermitilis GlnR (GlnRsav) could stimulate avermectin but repress oligomycin production directly through the respective pathway-specific activator genes, aveR and olmRI/RII To the best of our knowledge, this report describes the first experimental evidence demonstrating that GlnR regulates antibiotic biosynthesis directly through pathway-specific regulators in Streptomyces Our results suggest that GlnR-mediated regulation of antibiotic biosynthesis is likely to be universal in streptomycetes. These findings also indicate that GlnR is not only a master nitrogen regulator but also an important controller of secondary metabolism, which may help to balance nitrogen metabolism and antibiotic biosynthesis in streptomycetes.


Assuntos
Proteínas de Bactérias/metabolismo , Ivermectina/análogos & derivados , Streptomyces/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/genética , Ivermectina/metabolismo , Streptomyces/genética , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA