Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891452

RESUMO

Waterproof and breathable membranes have a huge market demand in areas, such as textiles and medical protection. However, existing fluorinated nanofibrous membranes, while possessing good waterproof and breathable properties, pose health and environmental hazards. Consequently, fabricating fluorine-free, eco-friendly waterborne membranes by integrating outstanding waterproofing, breathability, and robust mechanical performance remains a significant challenge. Herein, we successfully prepared waterborne silicone-modified polyurethane nanofibrous membranes with excellent elasticity, waterproofing, and breathability properties through waterborne electrospinning, using a small quantity of poly(ethylene oxide) as a template polymer and in situ doping of the poly(carbodiimide) crosslinking agent, followed by a simple hot-pressing treatment. The silicone imparted the nanofibrous membrane with high hydrophobicity, and the crosslinking agent enabled its stable porous structure. The hot-pressing treatment (120 °C) further reduced the pore size and improved the water resistance. This environmentally friendly nanofibrous membrane showed a high elongation at break of 428%, an ultra-high elasticity of 67.5% (160 cycles under 400% tensile strain), an air transmission of 13.2 mm s-1, a water vapor transmission rate of 5476 g m-2 d-1, a hydrostatic pressure of 51.5 kPa, and a static water contact angle of 137.9°. The successful fabrication of these environmentally friendly, highly elastic membranes provides an important reference for applications in healthcare, protective textiles, and water purification.

2.
ACS Omega ; 8(15): 13863-13875, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091404

RESUMO

Carbon dioxide (CO2) has an essential role in most enhanced oil recovery (EOR) methods in the oil industry. Oil swelling and viscosity reduction are the dominant mechanisms in an immiscible CO2-EOR process. Besides numerous CO2 applications in EOR, most oil reservoirs do not have access to natural CO2, and capturing it from flue gas and other sources is costly. Flue gases are available in huge quantities at a significantly lower price and can be considered economically viable agents for EOR operations. In this work, four powerful machine learning algorithms, namely, extra tree (ET), random forest (RF), gradient boosting (GBoost), and light gradient boosted machine (LightGBM) were utilized to accurately estimate the viscosity of CO2-N2 mixtures. To this aim, a databank was employed, containing 3036 data points over wide ranges of pressures and temperatures. Temperature, pressure, and CO2 mole fraction were applied as input parameters, and the viscosity of the CO2-N2 mixture was the output. The RF smart model had the highest precision with the lowest average absolute percent relative error (AAPRE) of 1.58%, root mean square error (RMSE) of 2.221, and determination coefficient (R 2) of 0.9993. The trend analysis showed that the RF model could precisely predict the real physical behavior of the CO2-N2 viscosity variation. Finally, the outlier detection was performed using the leverage approach to demonstrate the validity of the utilized databank and the applicability area of the developed RF model. Accordingly, nearly 96% of the data points seemed to be dependable and valid, and the rest of them were located in the suspected and out-of-leverage data zones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA