Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(1): e0228456, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999769

RESUMO

The combination of a fluorescent reporter and enzymatic reporter provides a flexible and versatile way for the study of diverse biological processes, such as the detection of transcription and translation. Thus, there is an urgent need to develop this novel bifunctional reporter system. This study reports the design, construction, and validation of a new dicistronic mCherry-lacZα reporter system by artificial lac operon and pbr operon models in lacZM15-producing E. coli. It allows two reporter genes to be co-transcribed into a dicistronic mRNA strand, followed by coupled expression of mCherry and lacZα. In artificial lac operons, expression of the downstream lacZα was demonstrated to be positively related to expression of the upstream ORF. In artificial pbr operons, compared with the insertion of downstream full-length lacZ, the insertion of downstream lacZα exerted a slight effect on the response from the upstream mCherry. Furthermore, the downstream lacZα reporter showed stronger response to Pb(II) than the downstream full-length lacZ. Importantly, the response sensitivity of downstream lacZα was still higher than that of upstream mCherry in a dual RFP-lacZα reporter construct. The highly efficient expression profile of the reporter lacZα peptide makes it a preferred downstream reporter in polycistronic constructs. This novel bifunctional reporter system offers a robust tool for biological studies.


Assuntos
Escherichia coli/genética , Genes Reporter , Chumbo/análise , Técnicas Biossensoriais , Expressão Gênica , Genes , Óperon Lac , Proteínas Luminescentes/genética , RNA Mensageiro/metabolismo , Proteína Vermelha Fluorescente
2.
Front Microbiol ; 10: 1454, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297105

RESUMO

Genetically encoded reporter proteins are important and widely used tools for the identification and capture of a promoter, tracking the dynamic behavior of transcription, and the quantification of promoter activity. The sensitivity of the reporter gene is a critical factor for an ideal reporter system because weak transcriptional signal has usually failed to be detected using classical reporters. In this study, we present a novel reporter system for improved monitoring of transcription in E. coli based on ß-galactosidase α-complementation. In this reporter system, the ß-galactosidase activity resulting from the assembly of a reporter lacZα and an existing α-acceptor in advance serves as a measure of transcriptional activity in vivo. To validate the potential of the lacZα-derived reporter system, a series of artificial operons were constructed, and the moderately strong lac promoter, ara promoter, and weak pbr promoter were chosen as the detection promoters. The response profiles of lacZα was similar to that of wild type lacZ in artificial lac operons. Due to its small size and efficient expression profile, the detection sensitivity of a lacZα-derived reporter system was significantly higher than that of the traditional full-length ß-galactosidase and the fluorescent protein mCherry reporter system in artificial ara operons. As expected, the response sensitivity of the lacZα-derived reporter system was also demonstrated to be significantly higher than that of the ß-galactosidase and mCherry reporter systems in lead-sensitive artificial pbr operons. The lacZα-derived reporter system may prove to be a valuable tool for detecting promoter activity, especially low-level transcription in vivo.

3.
Biotechnol Lett ; 41(6-7): 763-777, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025146

RESUMO

OBJECTIVES: An efficient bacterial surface display system based on the anchoring motif derived from Escherichia coli (E. coli) outer membrane protease OmpT was developed in this study. RESULTS: Referring to the classical Lpp-OmpA (LOA) display system, the signal peptide and nine amino acids of mature Lpp were fused to the transmembrane domain comprising five ß-strands of truncated OmpT to generate a novel Lpp-OmpT (LOT) display system. The C-terminal fusion strategy was used to fuse a small peptide (His tag) and red fluorescent protein (mCherry) to the C-terminus of LOT. Cell surface exposure of His tag and mCherry were compared between the LOA and LOT display systems. E. coli expressing LOT-His tag adsorbed more Cu2+ than E. coli expressing LOA-His tag. E. coli expressing both LOT-mCherry-His tag and LOA-mCherry-His tag adhered to Cu2+ chelating sepharose beads, and adhered cells could be dissociated from the beads after excess Cu2+ treatment. More importantly, compared with the LOA system, a higher amount of LOT-mCherry-His tag hybrid protein was demonstrated to be localized at the outer membrane by both fluorescence spectrophotometric determination of cell fractions and cell-surface immunofluorescence assay. CONCLUSIONS: These results suggest that genetically modified OmpT can be used as a potential anchoring motif to efficiently and stably display polypeptides and proteins, and that the LOT system could be used in a variety of biotechnological and industrial processes.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Técnicas de Visualização da Superfície Celular/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Engenharia Metabólica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA