RESUMO
The paper explores the thoughts and manipulations of tuina at "Tianyou (TE 16) and five regions" for the treatment of acute pharyngitis based on "Tianyou (TE 16) and five regions" in Huangdi Neijing (Yellow Emperor's Inner Classic). "Tianyou (TE 16) and five regions" refer to the special acupoints of yang meridians, mostly located at the neck region. It is the "window" of the head and neck, acting on dispersing wind and regulating qi and blood by opening the "window". Acute pharyngitis is caused by the invasion of exogenous wind and heat to the throat or by re-attack of exogenous factors and heat accumulation in the lung and stomach. Pathogenic wind and heat is the chief causative factor. Based on the theory and location of "Tianyou (TE 16) and five regions", the manipulations of tuina, i.e. point-pressing, plucking and smoothing, are operated to open "huyou" (door and window) of the head and face, combined by bleeding at the ear apex so that the path is opened for pathogen elimination. As a result, the pathogenic wind and heat are dispelled, qi movement is promoted and the throat is benefited.
Assuntos
Pontos de Acupuntura , Faringite , Humanos , Faringite/terapia , Faringite/história , Medicina na Literatura/história , Doença Aguda/terapia , Meridianos , Terapia por Acupuntura/históriaRESUMO
Wound healing comprises a series of complex physiological processes, including hemostasis, inflammation, cell proliferation, and tissue remodeling. Designing new functional biomaterials by biological macromolecules with tailored therapeutic effects to precisely match the unique requirements of each stage is cherished but rarely discussed. Here, we employ all-aqueous microfluidics to fabricate multifunctional core-shell microparticles aimed at promoting whole-stage wound healing. These microparticles feature a core comprising calcium alginate, cellulose nanocrystals and epidermal growth factor, surrounded by a shell made of alkylated chitosan, alginate, and ciprofloxacin (EGFâ¯+â¯CNC@Ca-ALG/CIP@ACS core-shell microparticles, D-CSMP). Response surface methodology (RSM) with a combination of central composite rotatable design (CCRD) is used to meticulously optimize the fabrication processes, endowing the resulting D-CSMP with superior capabilities for efficiently encapsulating and controlled releasing CIP and EGF tailored to each stage aligning the healing timeline. The developed D-CSMP demonstrate notable time-sequential functionalities, including promoting blood coagulation, enhancing hemostasis, and exerting antibacterial effects. Furthermore, in a skin injury model, D-CSMP significantly expedite and enhance the chronic wound healing process. In conclusion, our core-shell microparticles with notable time-sequential functions present a versatile and robust approach for wound treatment and related biomedical applications.
RESUMO
Moiré superlattices of layered transition metal dichalcogenides are proven to host periodic electron crystals due to strong correlation effects. These electron crystals can also be intertwined with intricate magnetic phenomena. In this Letter, we present our findings on the moiré exchange effect, resulting from the modulation of local magnetic moments by electron crystals within well-aligned WSe_{2}/WS_{2} heterobilayers. Employing polarization-resolved magneto-optical spectroscopy, we unveil a high-energy excitonic resonance near one hole per moiré unit cell (v=-1), which possesses a giant g factor several times greater than the already very large g factor of the WSe_{2} A exciton in this heterostructure. Supported by continuum model calculations, these high-energy states are found to be dark excitons brightened through Umklapp scattering from the moiré mini-Brillouin zone. When the carriers form a Mott insulating state near v=-1, the Coulomb exchange between doped carriers and excitons forms an effective magnetic field with moiré periodicity. This moiré exchange effect gives rise to the observed giant g factor for the excitonic Umklapp state.
RESUMO
Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) is important for human bone formation. Long non-coding RNAs (lncRNAs) are critical regulators in osteogenic differentiation. This study aimed to explore the function and mechanisms of long intergenic non-protein coding RNA 963 (LINC00963) in affecting osteogenesis. Cell differentiation was assessed by alkaline phosphatase (ALP) activity detection and ALP staining assay. Meanwhile, levels of osteogenic marker genes, including RUNX family transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN), were detected by RT-qPCR and western blot. Cell proliferation and apoptosis were measured using CCK-8 assay and flow cytometry analysis. RNA immunoprecipitation (RIP), RNA pull-down and luciferase reporter assays were used to investigate the interaction between genes. LINC00963 expression was down-regulated in hBMSCs treated with osteogenic induction. LINC00963 overexpression inhibited hBMSCs differentiation, proliferation, and elevated apoptosis. LINC00963 acted as a competing endogenous RNA (ceRNA) to interact with miR-10b-5p and thereby regulated the expression level of Ras-related protein Rap-2a (RAP2A). LINC00963 regulated RAP2A to inhibit the level of phosphorylated AKT (p-AKT). LINC00963 inhibited hBMSCs differentiation, proliferation, and elevated apoptosis via the miR-10b-5p/RAP2A/AKT signaling, which might help improve the treatment of osteoporosis.
Assuntos
Apoptose , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Humanos , Osteogênese/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Células-Tronco Mesenquimais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Cultivadas , Regulação para BaixoRESUMO
Atherosclerosis (AS) is a significant global health concern due to its high morbidity and mortality rates. Extensive efforts have been made to replicate the cardiovascular system and explore the pathogenesis, diagnosis, and treatment of AS. Microfluidics has emerged as a valuable technology for modeling the cardiovascular system and studying AS. Here a brief review of the advances of microfluidic-based cardiovascular systems for AS research is presented. The critical pathogenetic mechanisms of AS investigated by microfluidic-based cardiovascular systems are categorized and reviewed, with a detailed summary of accurate diagnostic methods for detecting biomarkers using microfluidics represented. Furthermore, the review covers the evaluation and screening of AS drugs assisted by microfluidic systems, along with the fabrication of novel drug delivery carriers. Finally, the challenges and future prospects for advancing microfluidic-based cardiovascular systems in AS research are discussed and proposed, particularly regarding new opportunities in multi-disciplinary fundamental research and therapeutic applications for a broader range of disease treatments.
Assuntos
Aterosclerose , Humanos , Aterosclerose/diagnóstico , Aterosclerose/tratamento farmacológico , Animais , Técnicas Analíticas Microfluídicas , Dispositivos Lab-On-A-Chip , Microfluídica/métodosRESUMO
Triboelectric nanogenerators (TENGs) have emerged as promising devices for generating self-powered therapeutic electrical stimulation over multiple aspects of wound healing. However, the challenge of achieving full 100% contact in conventional TENGs presents a substantial hurdle in the quest for higher current output, which is crucial for further improving healing efficacy. Here, a novel multifunctional wound healing system is presented by integrating the aqueous-aqueous triboelectric nanogenerators (A-A TENGs) with a functionalized conductive hydrogel, aimed at advancing infected wound therapy. The A-A TENGs are founded on a principle of 100% contact interface and efficient post-contact separation of the immiscible interface within the aqueous two-phase system (ATPS), enhancing charge transfer and subsequently increasing current performance. Leveraging this intensified current output, this system demonstrates efficient therapeutic efficacies over infected wounds both in vitro and in vivo, including stimulating fibroblast migration and proliferation, boosting angiogenesis, enhancing collagen deposition, eradicating bacteria, and reducing inflammatory cells. Moreover, the conductive hydrogel ensures the uniformity and integrity of the electric field covering the wound site, and exhibits multiple synergistic therapeutic effects. With the capability to realize accelerated wound healing, the developed "A-A TENGs empowered multifunctional wound healing system" presenting an excellent prospect in clinical wound therapy.
RESUMO
We show that interlayer charge transfer in 2D materials can be driven by an in-plane electric field, giving rise to electrical multipole generation in linear and second order in-plane field. The linear and nonlinear effects have quantum geometric origins in the Berry curvature and quantum metric, respectively, defined in extended parameter spaces characteristic of layered materials. We elucidate their symmetry characters and demonstrate sizable dipole and quadrupole polarizations, respectively, in twisted bilayers and trilayers of transition metal dichalcogenides. Furthermore, we show that this effect is strongly enhanced during the topological phase transition tuned by interlayer translation. The effects point to a new electric control on the layer quantum degree of freedom.
RESUMO
Neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt) that express the glucagon gene (Gcg) give rise to glucagon-like peptide 1 (GLP1)-immunopositive axons in the spinal cord and many subcortical brain regions. Central GLP1 receptor signaling contributes to motivated behavior and stress responses in rats and mice, in which hindbrain GLP1 neurons are activated to express c-Fos in a metabolic state-dependent manner. The present study examined whether GLP1 inputs to distinct brain regions arise from distinct subsets of Gcg-expressing neurons, and mapped the distribution of axon collaterals arising from projection-defined GLP1 neural populations. Using our Gcg-Cre knock-in rat model, Cre-dependent adeno-associated virus (AAV) tracing was conducted in adult male and female rats to compare axonal projections of IRt versus cNTS GLP1 neurons. Overlapping projections were observed in all brain regions that receive GLP1 input, with the caveat that cNTS injections produced Cre-dependent labeling of some IRt neurons, and vice versa. In additional experiments, specific diencephalic or limbic forebrain nuclei were microinjected with Cre-dependent retrograde AAVs (AAVrg) that expressed reporters to fully label the axon collaterals of transduced GLP1 neurons. AAVrg injected into each forebrain site labeled Gcg-expressing neurons in both the cNTS and IRt. The collective axon collaterals of labeled neurons entered the spinal cord and every brain region previously reported to contain GLP1-positive axons. These results indicate that the axons of GLP1 neural populations that innervate the thalamic paraventricular nucleus, paraventricular nucleus of the hypothalamus, and/or bed nucleus of the stria terminalis collectively innervate all central regions that receive GLP1 axonal input.
Assuntos
Axônios , Peptídeo 1 Semelhante ao Glucagon , Neurônios , Rombencéfalo , Animais , Masculino , Feminino , Ratos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Neurônios/metabolismo , Axônios/metabolismo , Rombencéfalo/metabolismo , Vias Neurais/metabolismo , Ratos Sprague-Dawley , Hipotálamo/metabolismo , Hipotálamo/citologia , Prosencéfalo/metabolismo , Sistema Límbico/metabolismo , Núcleo Solitário/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismoRESUMO
Topological insulators and semimetals have been shown to possess intriguing thermoelectric properties promising for energy harvesting and cooling applications. However, thermoelectric transport associated with the Fermi arc topological surface states on topological Dirac semimetals remains less explored. This work systematically examines thermoelectric transport in a series of topological Dirac semimetal Cd3As2 thin films grown by molecular beam epitaxy. Surprisingly, significantly enhanced Seebeck effect and anomalous Nernst effect are found at cryogenic temperatures when the Cd3As2 layer is thin. In particular, a peak Seebeck coefficient of nearly 500 µV K-1 and a corresponding thermoelectric power factor over 30 mW K-2 m-1 are observed at 5 K in a 25-nm-thick sample. Combining angle-dependent quantum oscillation analysis, magnetothermoelectric measurement, transport modeling, and first-principles simulation, the contributions from bulk and surface conducting channels are isolated and the unusual thermoelectric properties are attributed to the topological surface states. The analysis showcases the rich thermoelectric transport physics in quantum-confined topological Dirac semimetal thin films and suggests new routes to achieving high thermoelectric performance at cryogenic temperatures.
RESUMO
The detection of nitroaromatic explosives in real samples is essential for environmental monitoring because of their strongly powerful nature and wide applications in industries. Aggregation-induced emission enhancement (AIEE) active fluorescent probe has been widely employed to detect nitroaromatic explosives. Hereby, a simple V-shaped bispyrene-based fluorescent probe (called py-o) with AIEE properties was designed and synthesized, which was fully charactered by 1D NMR, ESI, FTIR, and 2D NOESY spectra. The py-o displayed bright blue-green fluorescence excimer emission at 480 nm in DMF/H2O (v/v 1:1). It is observed that the fluorescence excimer emission of py-o at 480 nm was quenched by PA in solution with a quenching constant of 5.45 × 104 M-1, and the limit of detection was approximately 0.139 µM. The details of the sensing mechanism were explained using 1H NMR titrations, Job's plot and Bensi-Hildebrand methods, which revealed a 1:1 binding ratio via the π-π interactions between PA and py-o. Meanwhile, it exhibited outstanding anti-interference ability in the detection of PA when interfering analytes were added under the same conditions. Furthermore, low-cost thin-layer chromatography (TLC) plates coated with py-o were developed as fluorescent tools for naked-eye detection of PA in the solid state. Therefore, this work provides a new method for constructing an AIEE fluorescent probe for the detection of nitroaromatic explosives to utilize in environmental monitoring.
RESUMO
MOTIVATION: Scientific advances build on the findings of existing research. The 2001 publication of the human genome has led to the production of huge volumes of literature exploring the context-specific functions and interactions of genes. Technology is needed to perform large-scale text mining of research papers to extract the reported actions of genes in specific experimental contexts and cell states, such as cancer, thereby facilitating the design of new therapeutic strategies. RESULTS: We present a new corpus and Text Mining methodology that can accurately identify and extract the most important details of cancer genomics experiments from biomedical texts. We build a Named Entity Recognition model that accurately extracts relevant experiment details from PubMed abstract text, and a second model that identifies the relationships between them. This system outperforms earlier models and enables the analysis of gene function in diverse and dynamically evolving experimental contexts. AVAILABILITY AND IMPLEMENTATION: Code and data are available here: https://github.com/cambridgeltl/functional-genomics-ie.
Assuntos
Genômica , Neoplasias , Humanos , Neoplasias/genética , Mineração de Dados/métodos , PubMed , FenótipoRESUMO
Moiré excitons are emergent optical excitations in two-dimensional semiconductors with moiré superlattice potentials. Although these excitations have been observed on several platforms, a system with dynamically tunable moiré potential to tailor their properties is yet to be realized. Here we present a continuously tunable moiré potential in monolayer WSe2, enabled by its proximity to twisted bilayer graphene (TBG) near the magic angle. By tuning local charge density via gating, TBG provides a spatially varying and dynamically tunable dielectric superlattice for modulation of monolayer WSe2 exciton wave functions. We observed emergent moiré exciton Rydberg branches with increased energy splitting following doping of TBG due to exciton wave function hybridization between bright and dark Rydberg states. In addition, emergent Rydberg states can probe strongly correlated states in TBG at the magic angle. Our study provides a new platform for engineering moiré excitons and optical accessibility to electronic states with small correlation gaps in TBG.
RESUMO
In this study, chitosan coatings with different degrees of deacetylation (DD, 88.1 % and 95.2 %) were electrostatically sprayed on sweet cherries to evaluate their impacts on postharvest characteristics and internal metabolism. The results showed that chitosan coating could effectively delay the change of weight, color, firmness, and maintain the content of total phenols, flavonoids and titratable acids, and inhibit the activities of ß-galactosidase and polyphenol oxidase during cold storage. The storage qualities and physiological activities of sweet cherry were significantly correlated with the contents of sorbitol, 4-hydroxycinnamic acid, hydrogenated hydroxycinnamic acid, tyrosine, proline, glutamine, phenylalanine, and other metabolites. Chitosan coating may modulate fruit quality by inhibiting the energy metabolism, accelerating the accumulation of carbohydrates, and promoting the metabolism of phenylalanine and flavonoid. Especially, chitosan coating with 88.1 % DD had better wettability on sweet cherry's peel and displayed more obvious preservation effect through stronger metabolic regulation ability.
Assuntos
Quitosana , Prunus avium , Conservação de Alimentos/métodos , Quitosana/farmacologia , Frutas , Flavonoides/metabolismo , Fenilalanina/metabolismoRESUMO
BACKGROUND: Acute-on-chronic liver failure (ACLF) is a major challenge in the field of hepatology. While mesenchymal stem cell (MSC) therapy can improve the prognosis of patients with ACLF, the molecular mechanisms through which MSCs attenuate ACLF remain poorly understood. We performed global miRNA and mRNA expression profiling via next-generation sequencing of liver tissues from MSC-treated ACLF mice to identify important signaling pathways and major factors implicated in ACLF alleviation by MSCs. METHODS: Carbon tetrachloride-induced ACLF mice were treated with saline or mouse bone marrow-derived MSCs. Mouse livers were subjected to miRNA and mRNA sequencing. Related signal transduction pathways were obtained through Gene Set Enrichment Analysis. Functional enrichment, protein-protein interaction, and immune infiltration analyses were performed for the differentially expressed miRNA target genes (DETs). Hub miRNA and mRNA associated with liver injury were analyzed using LASSO regression. The expression levels of hub genes were subjected to Pearson's correlation analysis and verified using RT-qPCR. The biological functions of hub genes were verified in vitro. RESULTS: The tricarboxylic acid cycle and peroxisome proliferator-activated receptor pathways were activated in the MSC-treated groups. The proportions of liver-infiltrating NK resting cells, M2 macrophages, follicular helper T cells, and other immune cells were altered after MSC treatment. The expression levels of six miRNAs and 10 transcripts correlated with the degree of liver injury. miR-27a-5p was downregulated in the mouse liver after MSC treatment, while its target gene E2f2 was upregulated. miR-27a-5p inhibited E2F2 expression, suppressed G1/S phase transition and proliferation of hepatocytes, in addition to promoting their apoptosis. CONCLUSIONS: This is the first comprehensive analysis of miRNA and mRNA expression in the liver tissue of ACLF mice after MSC treatment. The results revealed global changes in hepatic pathways and immune subpopulations. The miR-27a-5p/E2F2 axis emerged as a central regulator of the MSC-induced attenuation of ACLF. The current findings improve our understanding of the molecular mechanisms through which MSCs alleviate ACLF.
Assuntos
Insuficiência Hepática Crônica Agudizada , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Insuficiência Hepática Crônica Agudizada/genética , Insuficiência Hepática Crônica Agudizada/terapia , Insuficiência Hepática Crônica Agudizada/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco Mesenquimais/metabolismoRESUMO
Surfactants are always added to coating formulations to ensure good adhesion of edible coatings to a product's surface and to maintain freshness. In this study, the effects of the mix surfactants Tween 20 and Span 80 with different hydrophile-lipophile balance (HLB) values on the film-forming ability, wettability, and preservation capacity of blueberry sodium alginate coating were investigated. The results indicated that Tween 20 obviously ensured favorable wettability and improved the uniformity and mechanical properties of the resulting film. While the addition of Span 80 reduced the mean particle size of the coating, enhanced the water resistance of the film, and helped to reduce blueberry weight loss. A sodium alginate coating with low viscosity and medium HLB could better inhibit the galactose, sucrose, and linoleic acid metabolism of blueberries, reduce the consumption of phenols, promote the accumulation of flavonoids, and thus display superior coating performance. In summary, sodium alginate coating with medium HLB had comprehensive advantages in film-forming ability and wettability and was conducive to the fresh-keeping role.
RESUMO
Crystalline silica particles (CSi) are an established human carcinogen, but it is not clear how these particles cause necessary mutations. A well-established scenario includes inflammation caused by retained particles in the bronchioles, activated macrophages, and reactive oxygen species (ROS) that cause DNA damage. In previous studies, we showed that CSi in contact with the plasma membrane of human bronchial epithelium induced double strand breaks within minutes. A signaling pathway implicating the ATX-LPA axis, Rac1, NLRP3, and mitochondrial depolarization upstream of DSB formation was delineated. In this paper, we provide in vitro and in vivo evidence that this signaling pathway triggers endonuclease G (EndoG) translocation from the mitochondria to the nucleus. The DNA damage is documented as γH2AX and p53BP1 nuclear foci, strand breaks in the Comet assay, and as micronuclei. In addition, the DNA damage is induced by low doses of CSi that do not induce apoptosis. By inhibiting the ATX-LPA axis or by EndoG knockdown, we prevent EndoG translocation and DSB formation. Our data indicate that CSi in low doses induces DSBs by sub-apoptotic activation of EndoG, adding CSi to a list of carcinogens that may induce mutations via sub-apoptotic and "minority MOMP" effects. This is the first report linking the ATX-LPA axis to this type of carcinogenic effect.
RESUMO
INTRODUCTION: Interoceptive feedback to the brain regarding the body's physiological state plays an important role in guiding motivated behaviors. For example, a state of negative energy balance tends to increase exploratory/food-seeking behaviors while reducing avoidance behaviors. We recently reported that overnight food deprivation reduces conditioned passive avoidance behavior in male (but not female) rats. Since fasting increases circulating levels of ghrelin, we hypothesized that ghrelin signaling contributes to the ability of fasting to reduce conditioned avoidance. METHODS: Ad libitum-fed male rats were trained in a passive avoidance procedure using mild footshock. Later, following overnight food deprivation, the same rats were pretreated with ghrelin receptor antagonist (GRA) or saline vehicle 30 min before avoidance testing. RESULTS: GRA restored passive avoidance in fasted rats as measured by both latency to enter and time spent in the shock-paired context. In addition, compared to vehicle-injected fasted rats, fasted rats that received GRA before reexposure to the shock-paired context displayed more cFos activation of prolactin-releasing peptide (PrRP)-positive noradrenergic (NA) neurons in the caudal nucleus of the solitary tract, accompanied by more cFos activation in downstream target sites of PrRP neurons (i.e., bed nucleus of the stria terminalis and paraventricular nucleus of the hypothalamus). DISCUSSION: These results support the view that ghrelin signaling contributes to the inhibitory effect of fasting on learned passive avoidance behavior, perhaps by suppressing recruitment of PrRP-positive NA neurons and their downstream hypothalamic and limbic forebrain targets.
Assuntos
Grelina , Receptores de Grelina , Ratos , Masculino , Animais , Grelina/farmacologia , Ratos Sprague-Dawley , Jejum , Núcleo Hipotalâmico ParaventricularRESUMO
OBJECTIVE: The glucagon gene (Gcg) encodes preproglucagon, which is cleaved to form glucagon-like peptide 1 (GLP1) and other mature signaling molecules implicated in metabolic functions. To date there are no transgenic rat models available for precise manipulation of GLP1-expressing cells in the brain and periphery. METHODS: To visualize and manipulate Gcg-expressing cells in rats, CRISPR/Cas9 was used to express iCre under control of the Gcg promoter. Gcg-Cre rats were bred with tdTomato reporter rats to tag Gcg-expressing cells. Cre-dependent AAVs and RNAscope in situ hybridization were used to evaluate the specificity of iCre expression by GLP1 neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt), and by intestinal and pancreatic secretory cells. Food intake was assessed in heterozygous (Het) Gcg-Cre rats after chemogenetic stimulation of cNTS GLP1 neurons expressing an excitatory DREADD. RESULTS: While genotype has minimal effect on body weight or composition in chow-fed Gcg-Cre rats, homozygous (Homo) rats have lower plasma glucose levels. In neonatal and adult Gcg-Cre/tdTom rats, reporter-labeled cells are present in the cNTS and IRt, and in additional brain regions (e.g., basolateral amygdala, piriform cortex) that lack detectable Gcg mRNA in adults but display transient developmental or persistently low Gcg expression. Compared to wildtype (WT) rats, hindbrain Gcg mRNA and GLP1 protein in brain and plasma are markedly reduced in Homo Gcg-Cre rats. Chemogenetic stimulation of cNTS GLP1 neurons reduced overnight chow intake in males but not females, the effect in males was blocked by antagonism of central GLP1 receptors, and hypophagia was enhanced when combined with a subthreshold dose of cholecystokinin-8 to stimulate gastrointestinal vagal afferents. CONCLUSIONS: Gcg-Cre rats are a novel and valuable experimental tool for analyzing the development, anatomy, and function of Gcg-expressing cells in the brain and periphery. In addition, Homo Gcg-Cre rats are a unique model for assessing the role of Gcg-encoded proteins in glucose homeostasis and energy metabolism.
Assuntos
Células Secretoras de Glucagon , Glucagon , Masculino , Animais , Ratos , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Núcleo Solitário/metabolismo , RNA Mensageiro/metabolismoRESUMO
Background: Functional nasal endoscopic surgery (FESS) is an effective treatment approach for chronic rhinosinusitis with nasal polyps (CRSwNP) patients, but some patients still suffer from postoperative recurrence. This study is aimed at investigating the expression of multiple cytokines in CRSwNP and revealing their relationships with postoperative recurrence. Methods: A total of 72 patients with CRSwNP, including 36 primary and 36 recurrent patients, were enrolled. Serum samples were obtained, 30 cytokine levels were measured by multiplex analysis, and the association between cytokine levels and recurrence was assessed. The most potential cytokines were further validated in another independent cohort with 60 primary and 60 recurrent CRSwNP patients. Results: The results of multiple cytokine profiling exhibited that the levels of eotaxin, G-CSF, IFN-α, IL-13, IL-17A, IL-5, MCP-1, and RANTES were vastly changed in the recurrent group in comparison with the primary group. Receiver-operating characteristic (ROC) curves highlighted that serum levels of eotaxin, IL-17A, and RANTES were strongly predictive of postoperative recurrence (area under the curve (AUC) > 0.7, P < 0.05). Further validation results showed that elevated serum eotaxin, IL-17A, and RANTES levels were enhanced in the recurrent group. The ROC curve showed that serum eotaxin (AUC = 0.729, P < 0.001) and RANTES (AUC = 0.776, P < 0.001) exhibited stronger ability than serum IL-17A (AUC = 0.617, P = 0.027) in predicting CRSwNP recurrence. Conclusion: Our data suggested that serum multiple cytokine profiling was associated with postoperative recurrence of CRSwNP, and eotaxin and RANTES might serve as potential biomarkers for predicting postoperative recurrence. These results might contribute to the understanding of the underlying mechanisms of recurrence and provide novel clues for precision therapy in CRSwNP.