Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Food Chem ; 463(Pt 4): 141558, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39393115

RESUMO

The hydrophobicity of glutelin, zein, and carotenoids has limited the development of corn-based functional food products. This paper aims to construct emulsions stabilized by multiple corn-derived components using a simple and organic solvent-free method. The emulsions comprised oil droplets dispersed in the water, where glutelin and starch were stabilizers. Optimal stability, smaller droplet sizes, and moderate viscosity were achieved with a glutelin/starch ratio of 1:4. The results of the dynamic rheological measurements of bulk emulsions as well as interfacial properties and microstructure revealed that the stability mechanism of glutelin-starch complex was the interplay of the increased continuous phase viscosity and stronger interfacial viscoelastic films. Thus, these combined factors effectively inhibited the creaming and coalescence of oil droplets. Interfacial films also protected the carotenoids. The results of this study elucidate the stabilization mechanism among different corn-derived components and therefore guide the design of corn-based personalized nutritional systems.

2.
Carbohydr Polym ; 346: 122668, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245519

RESUMO

Gelation is a critical property of citrus pectin. However, the roles played by neutral sugar side-chains on acid-induced pectin gelation remain poorly understood. Herein, galactan- or/and arabinan-eliminated pectins (P-G, P-A, and P-AG) were used to investigate the effects of side-chains on gelation. The gel hardness values of citrus pectin, P-G, P-A, and P-AG were 42.6, 39.9, 5.3, and 2.1 g, respectively, suggesting that arabinan contributed more to gelation than galactan. We next found that arabinan branches promoted pectin chain entanglement more effectively than arabinan backbones. Destabilizer addition experiments showed that hydrogen bonding, electrostatic interaction, and hydrophobic interaction were the main forces affecting pectin gel networks and strength, which was further validated by molecular dynamic simulations. The total number of hydrogen bonds between the arabinan branches and galactan/HG (65.7) was significantly higher than that between the arabinan backbones and galactan/HG (39.1), indicating that arabinan branches predominated in terms of such interactions. This study thus elucidated the roles played by neutral-sugar side-chains, especially the arabinan branches of acid-induced pectin gels, in term of enhancing high-methoxyl pectin gelation, and offers novel insights into the structure-gelling relationships of citrus pectin.


Assuntos
Géis , Ligação de Hidrogênio , Pectinas , Pectinas/química , Géis/química , Polissacarídeos/química , Simulação de Dinâmica Molecular , Citrus/química , Interações Hidrofóbicas e Hidrofílicas
3.
Food Funct ; 15(20): 10447-10458, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39329172

RESUMO

Nobiletin (NBT) is a unique flavonoid mainly found in citrus fruits and has been reported to inhibit colon carcinogenesis in multiple rodent models. However, the direct molecular targets of NBT are unknown, which greatly limits its utilization in cancer prevention and treatment. In this study, using affinity chromatography, proteomics, computer modeling and various biochemical analyses, for the first time we identified HSC70 as a direct protein target of NBT in colon cancer cells. Moreover, NBT bound to HSC70 at its ATP-binding site and inhibited its ATPase activity. Importantly, our results also demonstrated that the major colonic metabolites of NBT (generated in the colon of NBT-fed mice) produced similar inhibitory effects against HSC70-mediated pro-carcinogenic events to those of NBT. Overall, our results provide a solid basis to further investigate the implication of the interaction between NBT/NBT metabolites and HSC70 in cancer chemoprevention.


Assuntos
Neoplasias do Colo , Flavonas , Flavonas/farmacologia , Flavonas/metabolismo , Animais , Neoplasias do Colo/prevenção & controle , Neoplasias do Colo/metabolismo , Camundongos , Humanos , Linhagem Celular Tumoral , Colo/metabolismo , Colo/efeitos dos fármacos , Masculino , Carcinogênese/efeitos dos fármacos , Citrus/química
4.
Food Chem ; 460(Pt 2): 140674, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089025

RESUMO

Citrus oil (CO) is a commonly used natural flavor with high volatility, which is not conducive to sustained release under food environmental stress. This study constructed novel ß-cyclodextrin/cationic cellulose nanocrystal (ß-CD/C-CNC) complexes via noncovalent interaction, which were used to stabilize CO-loaded Pickering emulsions (PEß-CD/C-CNC). The C-CNC greatly improved the physical stability, droplet dispersion and viscoelasticity of PEß-CD/C-CNC by forming a tight network structure, as verified by rheological behavior. Moreover, C-CNC improved the wettability of ß-CD/C-CNC complexes and enhanced the interaction between adjacent ß-CD/C-CNC complexes. C-CNC also contributed to the interfacial viscoelasticity, hydrated mass, and layer thickness via the interfacial dilational modulus and QCM-D. ß-CD/C-CNC complexes adsorbed on the oil-water interface gave rise to a dense filling layer as a physical barrier, enhancing the sustained-release performance of PEß-CD/C-CNC by limiting diffusion of citrus essential oil into the headspace. This study provides new technical approaches for aroma retention in the food industry.


Assuntos
Celulose , Citrus , Preparações de Ação Retardada , Emulsões , Óleos Voláteis , beta-Ciclodextrinas , Emulsões/química , Citrus/química , beta-Ciclodextrinas/química , Celulose/química , Óleos Voláteis/química , Preparações de Ação Retardada/química , Reologia , Viscosidade , Cátions/química , Nanopartículas/química
5.
Food Chem ; 459: 140370, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38986208

RESUMO

Due to the excellent health benefits of rhamnogalacturonan I (RG-I)-enriched pectin, there has been increasing research interest in its gelling properties. To elucidate its structure-gelation relationship, chemical modifications were used to obtain RG-I-enriched pectin (P11). Then, enzymatic modification was performed to obtain debranched pectins GP11 and AP11, respectively. The effects of RG-I side chains on structural characteristics (especially spatial conformation) and gelling properties were investigated. Among the low-methoxylated pectins (LMPs), AP11, with a loose conformation (Dmax 52 nm) showed the poorest gelling, followed by GP11. In addition to primary structure, spatial conformation (Dmax and Rg) also showed strong correlations (r2 > 0.8) with gelation. We speculate that compact conformation may shorten distance between pectin chains and reduces steric hindrance, contributing to formation of strong gel network. This is particularly important in LMPs with abundant side chains. The results provide novel insights into relationship between spatial conformation and gelling properties of RG-I-enriched pectin.


Assuntos
Citrus , Géis , Pectinas , Pectinas/química , Géis/química , Citrus/química , Cálcio/química , Cálcio/metabolismo
6.
Carbohydr Polym ; 342: 122410, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048202

RESUMO

To facilitate the application of rhamnogalacturonan-I (RG-I)-enriched pectins (RGPs) as novel, healthy, and gelling food additives, this study compared the structural characteristics and gelling properties of RGPs extracted from citrus peel via four methods (alkali: AK, high-temperature/pressure: TP, citric acid: CA, and enzyme-assisted: EA extractions). AK and CA yielded pectins with the highest RG-I proportions (54.8 % and 51.9 %, respectively) by disrupting the homogalacturonan region; TP and EA increased the RG-I proportions by ~10 %. Among the four methods, AK induced the lowest degree of esterification (DE) (6.7 %) and longer side chains that form strong entanglement, contributing to its highest gel hardness. The relatively low DE (18.5 %) of CA RGP facilitated stable gel formation. Notably, its highly branched RG-I region afforded more intramolecular hydrophobic interactions, making a more highly cross-linked gel network of better gel resilience. In contrast, TP induced the highest DE (57 %) and curved molecular chains; it inhibited Ca2+ binding, entanglement, and intramolecular hydrophobic interactions, and thus no gel formed. EA RGP was associated with the lowest molecular size, rendering it more difficult for Ca2+ to form links, which resulted no gel. These findings offer insights into the relationship among the extraction methods, molecular structures, and gelling properties of RGPs.


Assuntos
Citrus , Géis , Pectinas , Pectinas/química , Pectinas/isolamento & purificação , Citrus/química , Géis/química , Esterificação , Interações Hidrofóbicas e Hidrofílicas , Ácido Cítrico/química , Reologia , Frutas/química
7.
J Adv Res ; 56: 1-14, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36894120

RESUMO

INTRODUCTION: Galactooligosaccharides (GOS) are lactogenic prebiotics that exert health benefits by stimulating the growth of different Lactobacillus strains in the gastrointestinal (GI) tract. OBJECTIVES: This study aimed to investigate the mechanism of action of different GOS-enriched lactobacilli in intestinal health. METHODS: Piglets and mice were supplemented with GOS to identify specific enrichment of Lactobacillus. The protective effects of individual GOS-enriched lactobacilli were investigated in Salmonella-infected mice. Macrophage depletion and transcriptome analysis were further performed to assess the involvement of macrophages and the underlying mechanisms of individual lactobacilli. An in vitro cell co-culture system was also used to evaluate the anti-adhesive and anti-invasive activities of lactobacilli against Salmonella in epithelial cells. RESULTS: GOS markedly increased the relative abundance of three lactobacilli including L. delbrueckii, L. johnsonii, and L. reuteri in both piglets and mice. Supplementation with GOS further alleviated Salmonella infection in mice. L. delbrueckii (ATCC®BAA 365™), but not L. johnsonii or L. reuteri, enhanced propionate production in the intestinal tract and ameliorated Salmonella-induced intestinal inflammation and barrier dysfunction by suppressing the JAK2-STAT3 signaling and M1 macrophage polarization. L. johnsonii (BNCC 186110), on the other hand, inhibited Salmonella adhesion and invasion of epithelial cells through competitive exclusion. However, L. reuteri (BNCC 186135) failed to protect mice against Salmonella infection. CONCLUSION: GOS-enriched lactobacilli show a differential role in protecting against Salmonella-induced intestinal barrier dysfunction and inflammation. Our results provide novel insights into the mechanism of action of GOS and individual Lactobacillus strains in the control and prevention of intestinal inflammatory disorders.


Assuntos
Limosilactobacillus reuteri , Probióticos , Salmonelose Animal , Animais , Camundongos , Suínos , Lactobacillus , Probióticos/farmacologia , Intestinos , Inflamação , Salmonelose Animal/prevenção & controle
8.
Carbohydr Polym ; 317: 121087, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364957

RESUMO

The amidation of pectin by amino acids has been widely applied due to its safety and excellent gelling properties. This study systematically examined the effects of pH on the gelling properties of lysine-amidated pectin during amidation and gelation. Pectin was amidated over the range of pH 4-10, and the amidated pectin obtained at pH 10 showed the highest degree of amidation (DA, 27.0 %) due to the de-esterification, electrostatic attraction, and the stretching state of pectin. Moreover, it also exhibited the best gelling properties due to its greater numbers of calcium-binding regions (carboxyl groups) and hydrogen bond donors (amide groups). During gelation, the gel strength of CP (Lys 10) at pH 3-10 first increased and then decreased, with the highest gel strength at pH 8, which was due to the deprotonation of carboxyl groups, protonation of amino groups, and ß-elimination. These results show that pH plays a key role in both amidation and gelation, with distinct mechanisms, and would provide a basis for the preparation of amidated pectins with excellent gelling properties. This will facilitate their application in the food industry.


Assuntos
Citrus , Lisina , Lisina/metabolismo , Pectinas/química , Esterificação , Concentração de Íons de Hidrogênio , Citrus/química , Géis/química
9.
Nanoscale ; 15(18): 8189-8196, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37093157

RESUMO

Peroxidase-based assays are the most extensively used in bioanalytical sensors because of their simple colorimetric readout and high sensitivity owing to enzymatic signal amplification. To improve the stability, modification, and cost of protein-based enzymes, such as horseradish peroxidase (HRP), various enzyme mimics, such as DNAzymes and nanozymes, have emerged over the last few decades. In this study, we compared the peroxidase activities of HRP, a G-quadruplex (G4)-hemin DNAzyme, and Fe3O4 nanozymes in terms of activity and stability under different conditions. The reactions were much slower at pH 7 than at pH 4. At pH 4, the turnover rate of HRP (375 s-1) was faster than that of G4 DNAzyme (0.14 s-1) and Fe3O4 (6.1 × 10-4 s-1, calculated by surface Fe concentration). When normalized to mass concentrations, the trend was the same. Through observation of the reaction for a long time of 2 h, the changes in the color and UV-vis spectra were also different for these catalysts, indicating different reaction mechanisms among these catalysts. Moreover, different buffers and nanozyme sizes were found to influence the activity of the catalysts. Fe3O4 showed the highest stability compared to HRP and G4 DNAzyme after a catalytic reaction or incubation with H2O2 for a few hours. This study helps to understand the properties of catalysts and the development of novel catalysts with enzyme-mimicking activities for application in various fields.


Assuntos
DNA Catalítico , Quadruplex G , DNA Catalítico/química , Hemina/química , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio , Peroxidase , Peroxidases
10.
Int J Biol Macromol ; 230: 123298, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646343

RESUMO

(-)-Epigallocatechin (EGC) has good health benefits, but its chemical stability is low. Pectin hydrogels have potential for the encapsulation and delivery of EGC, but they are limited by porous networks and poor mechanical properties. In this study, protein (whey protein isolate and caseinate)-reinforced pectin hydrogel beads (HBPEC-WPI and HBPEC-CAS) were developed to overcome these limitations. The results showed that HBPEC-CAS was a superior delivery system for EGC. HBPEC-CAS had a compact network structure, mainly because of the hydrogen bonds that formed between caseinate and pectin. Moreover, the EGC encapsulation efficiency of HBPEC-CAS (2.4%) reached 92.23 %; HBPEC-CAS (2.4%) could also delay the release of EGC in an aqueous environment, while ensuring its sufficient release in a simulated gastrointestinal environment. Notably, EGC was chemically stabilized in HBPEC-CAS (2.4%) during a 6-day storage period at 37 °C through the inhibition of its epimerization, oxidation, dimerization, and trimerization. The numerous hydroxyl groups in EGC readily interacted with the exposed amino acid residues in caseinate and created more protective sites. This study developed a strategy for protein-reinforced pectin hydrogel development and approaches for the protection of tea polyphenols; the findings offer useful insights for the tea-based food and beverage industry.


Assuntos
Catequina , Hidrogéis , Hidrogéis/química , Pectinas/química , Caseínas , Chá
11.
Crit Rev Food Sci Nutr ; 63(19): 3750-3770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34672231

RESUMO

Flavonoids have been attracting increasing research interest because of their multiple health promoting effects. However, many flavonoids with similar structures are present in foods, often at low concentrations, which increases the difficulty of their separation and identification. Liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-Q-TOF-MS/MS) has become one of the most widely used techniques for flavonoid detection. LC-Q-TOF-MS/MS can achieve highly efficient separation by LC; it also provides structural information regarding flavonoids by Q-TOF-MS/MS. This review presents a comprehensive summary of the scientific principles and detailed methodologies (e.g., qualitative determination, quantitative determination, and data processing) of LC-Q-TOF-MS/MS specifically for food flavonoids. It also discusses the recent applications of LC-Q-TOF-MS/MS in determination of flavonoid types and contents in agricultural products, changes in their structures and contents during food processing, and metabolism in vivo after consumption. Moreover, it proposes necessary technological improvements and potential applications. This review would facilitate the scientific understanding of theory and technique of LC-Q-TOF-MS/MS for flavonoid detection, and promote its applications in food and health industry.


Assuntos
Flavonoides , Espectrometria de Massas em Tandem , Flavonoides/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Alimentos
12.
Crit Rev Food Sci Nutr ; 63(14): 2018-2041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34609268

RESUMO

Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.


Assuntos
Citrus , Frutas , Frutas/química , Citrus/química , Nutrientes , Flavonoides/análise , Vitaminas
13.
Biology (Basel) ; 11(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36552328

RESUMO

Hydroxylated polymethoxyflavones (PMFs) are a unique class of flavonoid compounds mainly found in citrus plants. We investigated the anti-inflammatory effects of one major 5-hydroxy PMF, namely 5-demethylnobiletin (5DN) and its metabolites 5, 3'-didemethylnobiletin (M1), 5, 4'-didemethylnobiletin (M2), and 5, 3', 4'-tridemethylnobiletin (M3) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The results showed that M2 and M3 produced stronger inhibitory effects on the production of nitric oxide (NO) than their parent compound at non-cytotoxic concentrations. Western blotting and real-time PCR analyses demonstrated that M2 and M3 significantly decreased iNOS and COX-2 gene expression. The results also showed that M1 and M3 induced heme oxygenase-1(HO-1) gene expression. Overall, our results demonstrated that metabolites of 5DN significantly inhibited LPS-induced inflammation in RAW 264.7 macrophage cells and generally possessed more potent anti-inflammatory activity than the parent compound, 5DN.

14.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576258

RESUMO

Food bioactives exhibit various health-promoting effects and are widely used in functional foods to maintain human health. After oral intake, bioactives undergo complex biological processes before reaching the target organs to exert their biological effects. However, several factors may reduce their bioavailability. Colloidal systems have attracted special attention due to their great potential to improve bioavailability and bioefficiency. Herein, we focus on the importance of in vivo studies of the biological fates of bioactives delivered by colloidal systems. Increasing evidence demonstrates that the construction, composition, and physicochemical properties of the delivery systems significantly influence the in vivo biological fates of bioactives. These results demonstrate the great potential to control the in vivo behavior of food bioactives by designing specific delivery systems. We also compare in vivo and in vitro models used for biological studies of the fate of food bioactives delivered by colloidal systems. Meanwhile, the significance of the gut microbiota, targeted delivery, and personalized nutrition should be carefully considered. This review provides new insight for further studies of food bioactives delivered by colloidal systems, as well as scientific guidance for the reasonable design of personalized nutrition.

16.
Molecules ; 27(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431910

RESUMO

The reliable, readily accessible and label-free measurement of aptamer binding remains a challenge in the field. Recent reports have shown large changes in the intrinsic fluorescence of DNA upon the formation of G-quadruplex and i-motif structures. In this work, we examined whether DNA intrinsic fluorescence can be used for studying aptamer binding. First, DNA hybridization resulted in a drop in the fluorescence, which was observed for A30/T30 and a 24-mer random DNA sequence. Next, a series of DNA aptamers were studied. Cortisol and Hg2+ induced fluorescence increases for their respective aptamers. For the cortisol aptamer, the length of the terminal stem needs to be short to produce a fluorescence change. However, caffeine and adenosine failed to produce a fluorescence change, regardless of the stem length. Overall, using the intrinsic fluorescence of DNA may be a reliable and accessible method to study a limited number of aptamers that can produce fluorescence changes.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Hidrocortisona , Aptâmeros de Nucleotídeos/química , DNA , Hibridização de Ácido Nucleico
17.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052655

RESUMO

Carotenoids in plant foods are sources of pro-vitamin A and nutrients with several health benefits, including antioxidant and anticancer activities. However, humans cannot synthesize carotenoids de novo and must obtain them from the diet, typically via plant foods. We review the chemical changes of carotenoids in plant foods from farm to table and nutrition, including nutrient release and degradation during processing and metabolism in vivo. We also describe the influencing factors and proposals corresponding to enhancing the release, retention and utilization of carotenoids, thus benefiting human health. Processing methods influence the release and degradation of carotenoids, and nonthermal processing may optimize processing effects. The carotenoid profile, food matrix, and body status influence the digestion, absorption, and biotransformation of carotenoids in vivo; food design (diet and carotenoid delivery systems) can increase the bioavailability levels of carotenoids in the human body. In this review, the dynamic fate of carotenoids in plant foods is summarized systematically and deeply, focusing on changes in their chemical structure; identifying critical control points and influencing factors to facilitate carotenoid regulation; and suggesting multi-dimensional strategies based on the current state of food processing industries to achieve health benefits for consumers.

18.
Nanoscale ; 14(39): 14613-14622, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36156621

RESUMO

While polyvalent metal ions and heating can both degrade nucleic acids, we herein report that a combination of them leads to stabilization. After incubating 4 mM various metal ions and DNA oligonucleotides at 95 °C for 3 h at pH 6 or 8, metal ions were divided into four groups based on gel electrophoresis results. Mg2+ can stabilize DNA at pH 6 without forming stable nanoparticles at room temperature. Co2+, Cu2+, Cd2+, Mn2+ and Zn2+ all protected the DNA and formed nanoparticles, whereas the nanoparticles formed with Fe2+ and Ni2+ were so stable that they remained even in the presence of EDTA. At pH 8, Ce3+ and Pb2+ showed degraded DNA bands. For Mg2+, better protection was achieved with higher metal and DNA concentrations. By monitoring temperature-programmed fluorescence change, a sudden drop in fluorescence intensity attributable to the lower critical solution temperature (LCST) transition of DNA was found to be around 80 °C for Mg2+, while this transition temperature decreased with increasing Mn2+ concentration. The unexpected thermal stability of DNA enabled by metal ions is useful for extending the application of DNA at high temperatures, forming coordination-driven nanomaterials, and it might offer insights into the origin of life on the early Earth.


Assuntos
Cádmio , Chumbo , DNA , Ácido Edético , Íons , Oligonucleotídeos , Temperatura
19.
Biosens Bioelectron ; 212: 114421, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35635967

RESUMO

Foodborne probiotics substantially impact human health. Thus, there is an urgent need for real-time and in situ detection of targeted probiotics. In this paper, a novel nanopopcorn fluorescent probe based on DNA-mediated Au@Ag@silica was designed and shown to display plasma resonance characteristics that generated more hot spots. This led to >18-fold greater fluorescence of indocyanine green dye with strong emission in the near-infrared (NIR-I and NIR-II) regions. Moreover, the new fluorescent probe exhibited high stability and low biotoxicity, having a strong linear relationship (R2 = 0.9615) with Lactobacillus Plantarum concentration over the range of 105-109 cfu/mL; it enabled in vivo tracing of exogenous probiotics. Compared with the traditional inductively coupled mass spectrometry (ICP-MS), the results are consistent (Correlation coefficient = 0.994), but the analysis time is much reduced by 89.6%. It is remarkable that the probe enabled real-time and in situ monitoring of target probiotic behavior in a simple, robust, and effective manner.


Assuntos
Técnicas Biossensoriais , Lactobacillus plantarum , Probióticos , DNA , Sondas de DNA , Corantes Fluorescentes/química , Humanos , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA