Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
EBioMedicine ; 105: 105209, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908099

RESUMO

BACKGROUND: Mapping gut microecological features to serum metabolites (SMs) will help identify functional links between gut microbiome and cardiometabolic health. METHODS: This study encompassed 836-1021 adults over 9.7 year in a cohort, assessing metabolic syndrome (MS), carotid atherosclerotic plaque (CAP), and other metadata triennially. We analyzed mid-term microbial metagenomics, targeted fecal and serum metabolomics, host genetics, and serum proteomics. FINDINGS: Gut microbiota and metabolites (GMM) accounted for 15.1% overall variance in 168 SMs, with individual GMM factors explaining 5.65%-10.1%, host genetics 3.23%, and sociodemographic factors 5.95%. Specifically, GMM elucidated 5.5%-49.6% variance in the top 32 GMM-explained SMs. Each 20% increase in the 32 metabolite score (derived from the 32 SMs) correlated with 73% (95% confidence interval [CI]: 53%-95%) and 19% (95% CI: 11%-27%) increases in MS and CAP incidences, respectively. Among the 32 GMM-explained SMs, sebacic acid, indoleacetic acid, and eicosapentaenoic acid were linked to MS or CAP incidence. Serum proteomics revealed certain proteins, particularly the apolipoprotein family, mediated the relationship between GMM-SMs and cardiometabolic risks. INTERPRETATION: This study reveals the significant influence of GMM on SM profiles and illustrates the intricate connections between GMM-explained SMs, serum proteins, and the incidence of MS and CAP, providing insights into the roles of gut dysbiosis in cardiometabolic health via regulating blood metabolites. FUNDING: This study was jointly supported by the National Natural Science Foundation of China, Key Research and Development Program of Guangzhou, 5010 Program for Clinical Research of Sun Yat-sen University, and the 'Pioneer' and 'Leading goose' R&D Program of Zhejiang.

2.
Res Sq ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699314

RESUMO

Background: Evidence is insufficient to establish a longitudinal association between combined trajectories of body mass index (BMI) and waist circumference (WC) and dyslipidemia. Our study aimed to explore the association between multi-trajectories of BMI and WC and incident dyslipidemia and identify microbiota and metabolite signatures of these trajectories. Methods: Stratified by sex, we used a group-based trajectory modeling approach to identify distinct multi-trajectories of BMI and WC among 10,678 participants from the China Health and Nutrition Survey over a 24-year period. For each sex, we examined the associations between these multi-trajectories (1991-2015) and the onset dyslipidemia (2018) using multivariable logistic regression adjusting for sociodemographic and lifestyles factors. We characterized the gut microbial composition and performed LASSO and logistic regression to identify gut microbial signatures associated with these multi-trajectories in males and females, respectively. Results: We identified four multi-trajectories of BMI and WC among both males and females: Normal (Group 1), BMI&WC normal increasing (Group 2), BMI&WC overweight increasing (Group 3), and BMI&WC obesity increasing (Group 4). Among males, Group 2 (OR: 2.10, 95% CI: 1.28-3.46), Group 3 (OR: 2.69, 95% CI: 1.56-4.63) and Group 4 (OR: 3.56, 95% CI: 1.85-6.83) had higher odds of developing dyslipidemia. However, among females, only those in Group 2 (OR: 1.54, 95% CI: 1.03-2.30) were more likely to develop dyslipidemia. In males, compared with Group 1, we observed lower alpha-diversity within Groups 2,3, and 4, and significant beta-diversity differences within Groups 3 and 4 (p 0.001). We also identified 3, 8, and 4 characteristic bacterial genera in male Groups 2, 3 and 4, and 2 genera in female Group 2. A total of 23, 25 and 10 differential metabolites were significantly associated with the above genera, except for Group 2 in males. Conclusions: The ascending combined trajectories of BMI and WC are associated with a higher risk of dyslipidemia, even with normal baseline levels, especially in males. Shared and unique gut microbial and metabolic signatures among these high-risk trajectories could enhance our understanding of the mechanisms connecting obesity to dyslipidemia.

3.
Gut ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724219

RESUMO

OBJECTIVE: The remodelling of gut mycobiome (ie, fungi) during pregnancy and its potential influence on host metabolism and pregnancy health remains largely unexplored. Here, we aim to examine the characteristics of gut fungi in pregnant women, and reveal the associations between gut mycobiome, host metabolome and pregnancy health. DESIGN: Based on a prospective birth cohort in central China (2017 to 2020): Tongji-Huaxi-Shuangliu Birth Cohort, we included 4800 participants who had available ITS2 sequencing data, dietary information and clinical records during their pregnancy. Additionally, we established a subcohort of 1059 participants, which included 514 women who gave birth to preterm, low birthweight or macrosomia infants, as well as 545 randomly selected controls. In this subcohort, a total of 750, 748 and 709 participants had ITS2 sequencing data, 16S sequencing data and serum metabolome data available, respectively, across all trimesters. RESULTS: The composition of gut fungi changes dramatically from early to late pregnancy, exhibiting a greater degree of variability and individuality compared with changes observed in gut bacteria. The multiomics data provide a landscape of the networks among gut mycobiome, biological functionality, serum metabolites and pregnancy health, pinpointing the link between Mucor and adverse pregnancy outcomes. The prepregnancy overweight status is a key factor influencing both gut mycobiome compositional alteration and the pattern of metabolic remodelling during pregnancy. CONCLUSION: This study provides a landscape of gut mycobiome dynamics during pregnancy and its relationship with host metabolism and pregnancy health, which lays the foundation of the future gut mycobiome investigation for healthy pregnancy.

4.
Langmuir ; 40(18): 9717-9724, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712354

RESUMO

Connectivity isomerization of the same aromatic molecular core with different substitution positions profoundly affects electron transport pathways and single-molecule conductance. Herein, we designed and synthesized all connectivity isomers of a thiophene (TP) aromatic ring substituted by two dihydrobenzo[b]thiophene (BT) groups with ethynyl spacers (m,n-TP-BT, (m,n = 2,3; 2,4; 2,5; 3,4)), to systematically probe how connectivity contributes to single-molecule conductance. Single-molecule conductance measurements using a scanning tunneling microscopy break junction (STM-BJ) technique show ∼12-fold change in conductance values, which follow an order of 10-4.83 G0 (2,4-TP-BT) < 10-4.78 G0 (3,4-TP-BT) < 10-4.06 G0 (2,3-TP-BT) < 10-3.75 G0 (2,5-TP-BT). Electronic structure analysis and theoretical simulations show that the connectivity isomerization significantly changes electron delocalization and HOMO-LUMO energy gaps. Moreover, the connectivity-dependent molecular structures lead to different quantum interference (QI) effects in electron transport, e.g., a strong destructive QI near E = EF leads the smallest conductance value for 2,4-TP-BT. This work proves a clear relationship between the connectivity isomerization and single-molecule conductance of thiophene heterocyclic molecular junctions for the future design of molecular devices.

5.
Food Funct ; 15(12): 6438-6449, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38775706

RESUMO

Background: The escalating prevalence of hyperuricemia is emerging as a significant public health concern. The association between dietary lignans and hyperuricemia is yet to be fully elucidated. Our study aims to evaluate the relationships between dietary lignan intake and hyperuricemia among middle-aged and elderly Chinese individuals, with an additional focus on investigating the underlying mechanisms. Methods: Dietary lignan intake was measured using a validated Food Frequency Questionnaire in 3801 participants at the baseline. Among them, 2552 participants were included in the longitudinal study with a median follow-up of 10.5 years. The gut microbiota was analyzed by shotgun metagenome sequencing in 1789 participants, and the targeted fecal metabolome was determined in 987 participants using UPLC-MS/MS at the midpoint of follow-up. Results: The multivariable-adjusted HRs (95% CIs) for hyperuricemia incidence in the highest quartile (vs. the lowest quartile) of dietary intake of total lignans, matairesinol, pinoresinol, and secoisolariciresinol were 0.93 (0.78-1.10), 0.77 (0.66-0.90), 0.83 (0.70-0.97), and 0.85 (0.73-1.00), respectively. The gut microbial and fecal metabolic compositions were significantly different across the dietary lignan groups and the hyperuricemia groups. The beneficial associations between dietary lignans and hyperuricemia might be mediated by several gut microbes (e.g., Fusobacterium mortiferum and Blautia sp. CAG-257) and the downstream bile acid products (e.g., NorCA, glycochenodeoxycholic acid, and glycoursodeoxycholic acid). Conclusion: We found that dietary lignans were inversely associated with hyperuricemia incidence, and the gut microbiota-bile acid axis might mediate this association. Our findings provide new perspectives on precise therapeutic targets and underlying mechanisms for conditions associated with elevated uric acid.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hiperuricemia , Lignanas , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Lignanas/administração & dosagem , Pessoa de Meia-Idade , Masculino , Feminino , Estudos Prospectivos , Idoso , Ácidos e Sais Biliares/metabolismo , Estudos Longitudinais , Fezes/microbiologia , Dieta , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , China , Adulto
6.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2281-2289, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812128

RESUMO

Liver fibrosis is a key pathological stage in the progression of chronic liver disease. If the disease is mistreated, it can further deteriorate into liver failure, which seriously affects the quality of life of patients and brings heavy medical costs. Hepatic stellate cell(HSC) activation triggers extracellular matrix(ECM) deposition, which plays an important driving role in liver fibrosis, and ferroptosis is an effective strategy to clear or reverse the activation of HSCs into a deactivated phenotype. Therefore, inhibiting the activation and proliferation of HSCs by regulating ferroptosis is the key to the treatment of this disease, so as to derive the prospect of inducing ferroptosis of HSCs(including RNA-binding proteins, non-coding RNA, chemicals, and active components of traditional Chinese medicine) to intervene in liver fibrosis. On this basis, this paper started from the activation of HSCs to induce ECM deposition and focused on summarizing the mechanism of inducing HSC ferroptosis in delaying the progression of liver fibrosis, so as to continuously enrich the clinical practice of liver fibrosis and provide a reference for subsequent basic research.


Assuntos
Ferroptose , Células Estreladas do Fígado , Cirrose Hepática , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Ferroptose/efeitos dos fármacos , Cirrose Hepática/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Animais , Matriz Extracelular/metabolismo
7.
Brain Commun ; 6(3): fcae150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745970

RESUMO

The aging brain represents the primary risk factor for many neurodegenerative disorders. Whole-brain oscillations may contribute novel early biomarkers of aging. Here, we investigated the dynamic oscillatory neural activities across lifespan (from 18 to 88 years) using resting Magnetoencephalography (MEG) in a large cohort of 624 individuals. Our aim was to examine the patterns of oscillation microstates during the aging process. By using a machine-learning algorithm, we identify four typical clusters of microstate patterns across different age groups and different frequency bands: left-to-right topographic MS1, right-to-left topographic MS2, anterior-posterior MS3 and fronto-central MS4. We observed a decreased alpha duration and an increased alpha occurrence for sensory-related microstate patterns (MS1 & MS2). Accordingly, theta and beta changes from MS1 & MS2 may be related to motor decline that increased with age. Furthermore, voluntary 'top-down' saliency/attention networks may be reflected by the increased MS3 & MS4 alpha occurrence and complementary beta activities. The findings of this study advance our knowledge of how the aging brain shows dysfunctions in neural state transitions. By leveraging the identified microstate patterns, this study provides new insights into predicting healthy aging and the potential neuropsychiatric cognitive decline.

8.
Mol Nutr Food Res ; : e2400022, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763911

RESUMO

SCOPE: Little is known about the effect of blood vitamin D status on the gut mycobiota (i.e., fungi), a crucial component of the gut microbial ecosystem. The study aims to explore the association between 25-hydroxyvitamin D [25(OH)D] and gut mycobiota and to investigate the link between the identified mycobial features and blood glycemic traits. METHODS AND RESULTS: The study examines the association between serum 25(OH)D levels and the gut mycobiota in the Westlake Precision Birth Cohort, which includes pregnant women with gestational diabetes mellitus (GDM). The study develops a genetic risk score (GRS) for 25(OH)D to validate the observational results. In both the prospective and cross-sectional analyses, the vitamin D is associated with gut mycobiota diversity. Specifically, the abundance of Saccharomyces is significantly lower in the vitamin D-sufficient group than in the vitamin D-deficient group. The GRS of 25(OH)D is inversely associated with the abundance of Saccharomyces. Moreover, the Saccharomyces is positively associated with blood glucose levels. CONCLUSION: Blood vitamin D status is associated with the diversity and composition of gut mycobiota in women with GDM, which may provide new insights into the mechanistic understanding of the relationship between vitamin D levels and metabolic health.

10.
BMC Med ; 22(1): 104, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454425

RESUMO

BACKGROUND: The specific microbiota and associated metabolites linked to non-alcoholic fatty liver disease (NAFLD) are still controversial. Thus, we aimed to understand how the core gut microbiota and metabolites impact NAFLD. METHODS: The data for the discovery cohort were collected from the Guangzhou Nutrition and Health Study (GNHS) follow-up conducted between 2014 and 2018. We collected 272 metadata points from 1546 individuals. The metadata were input into four interpretable machine learning models to identify important gut microbiota associated with NAFLD. These models were subsequently applied to two validation cohorts [the internal validation cohort (n = 377), and the prospective validation cohort (n = 749)] to assess generalizability. We constructed an individual microbiome risk score (MRS) based on the identified gut microbiota and conducted animal faecal microbiome transplantation experiment using faecal samples from individuals with different levels of MRS to determine the relationship between MRS and NAFLD. Additionally, we conducted targeted metabolomic sequencing of faecal samples to analyse potential metabolites. RESULTS: Among the four machine learning models used, the lightGBM algorithm achieved the best performance. A total of 12 taxa-related features of the microbiota were selected by the lightGBM algorithm and further used to calculate the MRS. Increased MRS was positively associated with the presence of NAFLD, with odds ratio (OR) of 1.86 (1.72, 2.02) per 1-unit increase in MRS. An elevated abundance of the faecal microbiota (f__veillonellaceae) was associated with increased NAFLD risk, whereas f__rikenellaceae, f__barnesiellaceae, and s__adolescentis were associated with a decreased presence of NAFLD. Higher levels of specific gut microbiota-derived metabolites of bile acids (taurocholic acid) might be positively associated with both a higher MRS and NAFLD risk. FMT in mice further confirmed a causal association between a higher MRS and the development of NAFLD. CONCLUSIONS: We confirmed that an alteration in the composition of the core gut microbiota might be biologically relevant to NAFLD development. Our work demonstrated the role of the microbiota in the development of NAFLD.


Assuntos
Microbioma Gastrointestinal , Microbiota , Hepatopatia Gordurosa não Alcoólica , Pessoa de Meia-Idade , Humanos , Animais , Camundongos , Idoso , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Vida Independente
11.
Am J Clin Nutr ; 119(5): 1164-1174, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479550

RESUMO

BACKGROUND: Epidemiological evidence suggests that a potential association between dietary protein intake and cardiovascular disease (CVD) may depend on the protein source, that is, plant- or animal-derived, but past research was limited and inconclusive. OBJECTIVES: To evaluate the association of dietary plant- or animal-derived protein consumption with risk of CVD, and its components ischemic heart disease (IHD) and stroke. METHODS: This analysis in the European Prospective Investigation into Cancer and Nutrition (EPIC)-CVD case-cohort study included 16,244 incident CVD cases (10,784 IHD and 6423 stroke cases) and 15,141 subcohort members from 7 European countries. We investigated the association of estimated dietary protein intake with CVD, IHD, and stroke (total, fatal, and nonfatal) using multivariable-adjusted Prentice-weighted Cox regression. We estimated isocaloric substitutions of replacing fats and carbohydrates with plant- or animal-derived protein and replacing food-specific animal protein with plant protein. Multiplicative interactions between dietary protein and prespecified variables were tested. RESULTS: Neither plant- nor animal-derived protein intake was associated with incident CVD, IHD, or stroke in adjusted analyses without or with macronutrient-specified substitution analyses. Higher plant-derived protein intake was associated with 22% lower total stroke incidence among never smokers [HR 0.78, 95% confidence intervals (CI): 0.62, 0.99], but not among current smokers (HR 1.08, 95% CI: 0.83, 1.40, P-interaction = 0.004). Moreover, higher plant-derived protein (per 3% total energy) when replacing red meat protein (HR 0.52, 95% CI: 0.31, 0.88), processed meat protein (HR 0.39, 95% CI: 0.17, 0.90), and dairy protein (HR 0.54, 95% CI: 0.30, 0.98) was associated with lower incidence of fatal stroke. CONCLUSION: Plant- or animal-derived protein intake was not associated with overall CVD. However, the association of plant-derived protein consumption with lower total stroke incidence among nonsmokers, and with lower incidence of fatal stroke highlights the importance of investigating CVD subtypes and potential interactions. These observations warrant further investigation in diverse populations with varying macronutrient intakes and dietary patterns.


Assuntos
Doenças Cardiovasculares , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Europa (Continente)/epidemiologia , Estudos Prospectivos , Idoso , Proteínas de Vegetais Comestíveis/administração & dosagem , Proteínas Animais da Dieta/administração & dosagem , Incidência , Acidente Vascular Cerebral/epidemiologia , Estudos de Coortes , Adulto , Fatores de Risco , Proteínas Alimentares/administração & dosagem , Dieta , Estudos de Casos e Controles
12.
J Hazard Mater ; 468: 133784, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382338

RESUMO

The relationship between PM2.5 and metabolic diseases, including type 2 diabetes (T2D), has become increasingly prominent, but the molecular mechanism needs to be further clarified. To help understand the mechanistic association between PM2.5 exposure and human health, we investigated short-term PM2.5 exposure trajectory-related multi-omics characteristics from stool metagenome and metabolome and serum proteome and metabolome in a cohort of 3267 participants (age: 64.4 ± 5.8 years) living in Southern China. And then integrate these features to examine their relationship with T2D. We observed significant differences in overall structure in each omics and 193 individual biomarkers between the high- and low-PM2.5 groups. PM2.5-related features included the disturbance of microbes (carbohydrate metabolism-associated Bacteroides thetaiotaomicron), gut metabolites of amino acids and carbohydrates, serum biomarkers related to lipid metabolism and reducing n-3 fatty acids. The patterns of overall network relationships among the biomarkers differed between T2D and normal participants. The subnetwork membership centered on the hub nodes (fecal rhamnose and glycylproline, serum hippuric acid, and protein TB182) related to high-PM2.5, which well predicted higher T2D prevalence and incidence and a higher level of fasting blood glucose, HbA1C, insulin, and HOMA-IR. Our findings underline crucial PM2.5-related multi-omics biomarkers linking PM2.5 exposure and T2D in humans.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Pessoa de Meia-Idade , Idoso , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Multiômica , China/epidemiologia , Biomarcadores , Material Particulado
13.
Anal Methods ; 16(10): 1531-1537, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391082

RESUMO

Nitrobenzene is currently the most widely used explosive substance, and is known for its high toxicity and mutagenicity. It can cause severe environmental and water pollution, posing a risk to public health. Among various explosives analysis methods, surface-enhanced Raman spectroscopy (SERS) has the advantages of fast analysis speed, low detection cost, and easy operation, and has become one of the most promising analytical detection methods. Here, we present a portable and reliable sol-based SERS method for the detection of trace amounts of 2,4,6-trinitrotoluene (TNT) in different water bodies. The Meisenheimer complex formed by nitrobenzene and hydrazine hydrate can assemble on unmodified Au nanoparticles in a sol via Au-N bonds, enabling rapid detection of TNT in seawater, lake water, and tap water using a portable Raman spectrometer. Experimental results show that this SERS method can complete the detection within a few minutes and the detection sensitivity can reach 0.01 mg L-1, which is far lower than China's national standard of no more than 0.5 mg L-1. Furthermore, this method was also successfully applied to detect trace 2,4-dinitrotoluene (2,4-DNT) and picric acid (2,4,6-trinitrophenol) in water, demonstrating its strong applicability for on-site detection of nitrobenzene explosives.

14.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045337

RESUMO

Since dietary intake is challenging to directly measure in large-scale cohort studies, we often rely on self-reported instruments (e.g., food frequency questionnaires, 24-hour recalls, and diet records) developed in nutritional epidemiology. Those self-reported instruments are prone to measurement errors, which can lead to inaccuracies in the calculation of nutrient profiles. Currently, few computational methods exist to address this problem. In the present study, we introduce a deep-learning approach --- Microbiome-based nutrient profile corrector (METRIC), which leverages gut microbial compositions to correct random errors in self-reported dietary assessments using 24-hour recalls or diet records. We demonstrate the excellent performance of METRIC in minimizing the simulated random errors, particularly for nutrients metabolized by gut bacteria in both synthetic and three real-world datasets. Further research is warranted to examine the utility of METRIC to correct actual measurement errors in self-reported dietary assessment instruments.

15.
Aging Cell ; 23(2): e14035, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37970652

RESUMO

The role of circulatory proteomics in osteoporosis is unclear. Proteome-wide profiling holds the potential to offer mechanistic insights into osteoporosis. Serum proteome with 413 proteins was profiled by liquid chromatography-tandem mass spectrometry (LC-MS/MS) at baseline, and the 2nd, and 3rd follow-ups (7704 person-tests) in the prospective Chinese cohorts with 9.8 follow-up years: discovery cohort (n = 1785) and internal validation cohort (n = 1630). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA) at follow-ups 1 through 3 at lumbar spine (LS) and femoral neck (FN). We used the Light Gradient Boosting Machine (LightGBM) to identify the osteoporosis (OP)-related proteomic features. The relationships between serum proteins and BMD in the two cohorts were estimated by linear mixed-effects model (LMM). Meta-analysis was then performed to explore the combined associations. We identified 53 proteins associated with osteoporosis using LightGBM, and a meta-analysis showed that 22 of these proteins illuminated a significant correlation with BMD (p < 0.05). The most common proteins among them were PHLD, SAMP, PEDF, HPTR, APOA1, SHBG, CO6, A2MG, CBPN, RAIN APOD, and THBG. The identified proteins were used to generate the biological age (BA) of bone. Each 1 SD-year increase in KDM-Proage was associated with higher risk of LS-OP (hazard ratio [HR], 1.25; 95% CI, 1.14-1.36, p = 4.96 × 10-06 ), and FN-OP (HR, 1.13; 95% CI, 1.02-1.23, p = 9.71 × 10-03 ). The findings uncovered that the apolipoproteins, zymoproteins, complements, and binding proteins presented new mechanistic insights into osteoporosis. Serum proteomics could be a crucial indicator for evaluating bone aging.


Assuntos
Osteoporose , Proteoma , Humanos , Estudos Prospectivos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Osteoporose/genética , Envelhecimento
16.
Int Urol Nephrol ; 56(3): 973-980, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37831385

RESUMO

BACKGROUND: Abnormal hematologic parameters before patients undergoing prostate biopsy play a pivotal role in guiding the surgical management of prostate cancer (PCa) incidence. This study aims to establish the first nomogram for predicting PCa risk for better surgical management. METHODS: We retrospectively reviewed and analyzed the data including basic information, preoperative hematologic parameters, and imaging examination of 540 consecutive patients who underwent transrectal ultrasound (TRUS)-guided prostate biopsy for elevated prostate-specific antigen (PSA) in our medical center between 2017 and 2021. Logistic regression analysis was used to determine the risk factors for PCa occurrence, and the nomogram was constructed to predict PCa occurrence. Finally, the data including 121 consecutive patients in 2022 were prospectively collected to further verify the results. RESULTS: In retrospective analyses, univariate and multivariate logistic analyses identified that three variables including age, diabetes, and De Ritis ratio (aspartate transaminase/alanine transaminase, AST/ALT) were determined to be significantly associated with PCa occurrence. A nomogram was constructed based on these variables for predicting the risk of PCa, and a satisfied predictive accuracy of the model was determined with a C-index of 0.765, supported by a prospective validation group with a C-index of 0.736. The Decision curve analysis showed promising clinical application. In addition, our results also showed that the De Ritis ratio was significantly correlated with the clinical stage of PCa patients, including T, N, and M stages, but insignificantly related to the Gleason score. CONCLUSIONS: The increased De Ritis ratio was significantly associated with the risk and clinical stage of PCa and this nomogram with good discrimination could effectively improve individualized surgical management for patient underdoing prostate biopsy.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Estudos Retrospectivos , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Próstata/diagnóstico por imagem , Próstata/patologia , Nomogramas , Antígeno Prostático Específico , Fatores de Risco
17.
Lancet Reg Health West Pac ; 39: 100823, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37927990

RESUMO

Background: Continuous glucose monitoring (CGM) has shown potential in improving maternal and neonatal outcomes in individuals with type 1/2 diabetes, but data in gestational diabetes mellitus (GDM) is limited. We aimed to explore the relationship between CGM-derived metrics during pregnancy and pregnancy outcomes among women with GDM. Methods: We recruited 1302 pregnant women with GDM at a mean gestational age of 26.0 weeks and followed them until delivery. Participants underwent a 14-day CGM measurement upon recruitment. The primary outcome was any adverse pregnancy outcome, defined as having at least one of the outcomes: preterm birth, large-for-gestational-age (LGA) birth, fetal distress, premature rupture of membranes, and neonatal intensive care unit (NICU) admission. The individual outcomes included in the primary outcome were considered as secondary outcomes. We conducted multivariable logistic regression to evaluate the association of CGM-derived metrics with these outcomes. Findings: Per 1-SD difference in time above range (TAR), glucose area under the curve (AUC), nighttime mean blood glucose (MBG), daytime MBG, and daily MBG was associated with higher risk of any adverse pregnancy outcome, with odds ratio: 1.22 (95% CI 1.08-1.36), 1.22 (95% CI 1.09-1.37), 1.18 (95% CI 1.05-1.32), 1.21 (95% CI 1.07-1.35), and 1.22 (95% CI 1.09-1.37), respectively. Time in range, TAR, AUC, nighttime MBG, daytime MBG, daily MBG, and mean amplitude of glucose excursions were positively associated, while time blow range was inversely associated with the risk of LGA. Additionally, higher value for TAR was associated with higher risk of NICU admission. We further summarized the potential thresholds of TAR (2.5%) and daily MBG (4.8 mmol/L) to distinguish individuals with and without any adverse pregnancy outcome. Interpretation: The CGM-derived metrics may help identify individuals at higher risk of adverse pregnancy outcomes. These CGM biomarkers could serve as potential new intervention targets to maintain a healthy pregnancy status among women with GDM. Funding: National Key R&D Program of China, National Natural Science Foundation of China, and Westlake Laboratory of Life Sciences and Biomedicine.

18.
Cell Genom ; 3(11): 100364, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020968

RESUMO

Aneuploidy compromises genomic stability, often leading to embryo inviability, and is frequently associated with tumorigenesis and aging. Different aneuploid chromosome stoichiometries lead to distinct transcriptomic and phenotypic changes, making it helpful to study aneuploidy in tightly controlled genetic backgrounds. By deploying the engineered SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) system to the newly synthesized megabase Sc2.0 chromosome VII (synVII), we constructed a synthetic disomic yeast and screened hundreds of SCRaMbLEd derivatives with diverse chromosomal rearrangements. Phenotypic characterization and multi-omics analysis revealed that fitness defects associated with aneuploidy could be restored by (1) removing most of the chromosome content or (2) modifying specific regions in the duplicated chromosome. These findings indicate that both chromosome copy number and specific chromosomal regions contribute to the aneuploidy-related phenotypes, and the synthetic chromosome resource opens new paradigms in studying aneuploidy.

19.
BMC Med ; 21(1): 414, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907866

RESUMO

BACKGROUND: The early life stage is critical for the gut microbiota establishment and development. We aimed to investigate the lifelong impact of famine exposure during early life on the adult gut microbial ecosystem and examine the association of famine-induced disturbance in gut microbiota with type 2 diabetes. METHODS: We profiled the gut microbial composition among 11,513 adults (18-97 years) from three independent cohorts and examined the association of famine exposure during early life with alterations of adult gut microbial diversity and composition. We performed co-abundance network analyses to identify keystone taxa in the three cohorts and constructed an index with the shared keystone taxa across the three cohorts. Among each cohort, we used linear regression to examine the association of famine exposure during early life with the keystone taxa index and assessed the correlation between the keystone taxa index and type 2 diabetes using logistic regression adjusted for potential confounders. We combined the effect estimates from the three cohorts using random-effects meta-analysis. RESULTS: Compared with the no-exposed control group (born during 1962-1964), participants who were exposed to the famine during the first 1000 days of life (born in 1959) had consistently lower gut microbial alpha diversity and alterations in the gut microbial community during adulthood across the three cohorts. Compared with the no-exposed control group, participants who were exposed to famine during the first 1000 days of life were associated with consistently lower levels of keystone taxa index in the three cohorts (pooled beta - 0.29, 95% CI - 0.43, - 0.15). Per 1-standard deviation increment in the keystone taxa index was associated with a 13% lower risk of type 2 diabetes (pooled odds ratio 0.87, 95% CI 0.80, 0.93), with consistent results across three individual cohorts. CONCLUSIONS: These findings reveal a potential role of the gut microbiota in the developmental origins of health and disease (DOHaD) hypothesis, deepening our understanding about the etiology of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Efeitos Tardios da Exposição Pré-Natal , Inanição , Adulto , Humanos , Pessoa de Meia-Idade , China , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , População do Leste Asiático , Fome Epidêmica , Microbiota , Inanição/complicações , Adolescente , Adulto Jovem , Idoso , Idoso de 80 Anos ou mais
20.
J Epidemiol ; 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37813622

RESUMO

BACKGROUND: The Guangzhou Nutrition and Health Study (GNHS) aims to assess the determinants of metabolic disease in nutritional aspects, as well as other environmental and genetic factors, and explore possible biomarkers and mechanisms with multi-omics integration. METHODS: The population-based sample of adults in Guangzhou, China (baseline: 40-83 years old; n = 5118) was followed up about every 3 years. All will be tracked via on-site follow-up and health information systems. We assessed detailed information on lifestyle factors, physical activities, dietary assessments, psychological health, cognitive function, body measurements, and muscle function. Instrument tests included dual-energy X-ray absorptiometry scanning, carotid artery and liver ultrasonography evaluations, vascular endothelial function evaluation, upper-abdomen and brain magnetic resonance imaging, and 14-d real-time continuous glucose monitoring tests. We also measured multi-omics, including host genome-wide genotyping, serum metabolome and proteome, gut microbiome (16S rRNA sequencing, metagenome, and internal transcribed spacer 2 sequencing), and fecal metabolome and proteome. RESULTS: The baseline surveys were conducted from 2008 to 2015. Now, we have completed 3 waves. The 3rd and 4th follow-ups have started but have yet to end. A total of 5118 participants aged 40-83 took part in the study. The median age at baseline was approximately 59.0 years and the proportion of female participants was about 69.4%. Among all the participants, 3628 (71%) completed at least one on-site follow-up with a median duration of 9.48 years. CONCLUSION: The cohort will provide data that have been influential in establishing the role of nutrition in metabolic diseases with multi-omics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA