Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Sci Total Environ ; 932: 173011, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719052

RESUMO

Ozone pollution presents a growing air quality threat in urban agglomerations in China. It remains challenge to distinguish the roles of emissions of precursors, chemical production and transportations in shaping the ground-level ozone trends, largely due to complicated interactions among these 3 major processes. This study elucidates the formation factors of ozone pollution and categorizes them into local emissions (anthropogenic and biogenic emissions), transport (precursor transport and direct transport from various regions), and meteorology. Particularly, we attribute meteorology, which affects biogenic emissions and chemical formation as well as transportation, to a perturbation term with fluctuating ranges. The Community Multiscale Air Quality (CMAQ) model was utilized to implement this framework, using the Pearl River Delta region as a case study, to simulate a severe ozone pollution episode in autumn 2019 that affected the entire country. Our findings demonstrate that the average impact of meteorological conditions changed consistently with the variation of ozone pollution levels, indicating that meteorological conditions can exert significant control over the degree of ozone pollution. As the maximum daily 8-hour average (MDA8) ozone concentrations increased from 20 % below to 30 % above the National Ambient Air Quality Standard II, contributions from emissions and precursor transport were enhanced. Concurrently, direct transport within Guangdong province rose from 13.8 % to 22.7 %, underscoring the importance of regional joint prevention and control measures under adverse weather conditions. Regarding biogenic emissions and precursor transport that cannot be directly controlled, we found that their contributions were generally greater in urban areas with high nitrogen oxides (NOx) levels, primarily due to the stronger atmospheric oxidation capacity facilitating ozone formation. Our results indicate that not only local anthropogenic emissions can be controlled in urban areas, but also the impacts of local biogenic emissions and precursor transport can be potentially regulated through reducing atmospheric oxidation capacity.

2.
Sci Total Environ ; : 172888, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697531

RESUMO

Volatile organic compounds (VOCs) emitted from solvent use sources constitute an important part of ozone (O3) and secondary organic aerosols (SOA) in the Pearl River Delta (PRD) region, China. While stringent control measures targeting VOCs have been implemented in recent years, an assessment of historical trends is imperative to evaluate their effectiveness. In this study, trends of VOC emissions, compositions, and reactivity from solvent use sources in the PRD region from 2006 to 2019 were estimated using a developed methodology, which considered the improvement of manufacturing equipment and removal efficiency. Results show that total VOC emissions from solvent use sources displayed an overall increase from 277 kt in 2006 to 400 kt in 2019 despites some fluctuations, with metal products contributing more than 20 % each year. Aromatics and oxygenated VOCs (OVOCs) accounted for over 70 % of total VOC emissions, increasing by 21 kt and 52 kt respectively. OFP and SOAFP increased by 40 % and 23 % respectively from 2006 to 2019. Specific aromatic species, including m/p-xylene, toluene, 1,2,3,5-tetramethylbenzene, o-xylene and ethylbenzene are identified as key species in both VOC emission amount and reactivity. This study aims to facilitate the understanding of VOC emission evolution from solvent use sources in the region and provide insights into the impact of enacted measures, aiding in the future development of more targeted and efficient strategies in the PRD region.

3.
Sci Total Environ ; 929: 172644, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38649054

RESUMO

Ammonia (NH3) contributes significantly to the formation of particulate matter, and vehicles represent a major source of NH3 in urban areas. However, there remains a lack of comprehensive understanding regarding the emission characteristics of NH3 from vehicles. This study conducted real-world driving emission (RDE) measurements and dynamometer measurements on 33 light-duty gasoline vehicles (LDGVs) to investigate their emission characteristics and impact factors. The tested vehicles include China 3 to China 6 emission standards. The results show that the average NH3 emission factors of LDGVs decreased by >80 % from China 3 to China 6 emission standards. The results obtained from dynamometer measurements reveal that independent from other conventional pollutants (such as HCHO and NOx), NH3 emissions do not exhibit significant emission peaks during the hot- or cold-start phase. The RDE measurement covers a more comprehensive range of the vehicle's real-world driving conditions, resulting in higher NH3 emission factors compared with dynamometer measurements. The analysis of RDE measurements revealed that NH3 emissions are influenced by vehicle speeds and accelerations. Acceleration processes contribute approximately 50 % of total NH3 emissions over a driving period. Finally, using real driving speed, acceleration, and road gradient as input parameters, an NH3 emission rate model based on vehicle specific power was developed. This emission rate model enables a more precise reflection of LDGVs' NH3 emissions of LDGVs across diverse driving conditions and provides valuable data support for high-resolution inventories of vehicle NH3 emissions.

4.
Small Methods ; : e2301670, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634248

RESUMO

Flow sensing exhibits significant potential for monitoring, controlling, and optimizing processes in industries, resource management, and environmental protection. However, achieving wireless real-time and omnidirectional sensing of gas/liquid flow on a simple, self-contained device without external power support has remained a formidable challenge. In this study, a compact-sized, fully self-powered wireless sensing flowmeter (CSWF) is introduced with a small size diameter of down to less than 50 mm, which can transmit real-time and omnidirectional wireless signals, as driven by a rotating triboelectric nanogenerator (R-TENG). The R-TENG triggers the breakdown discharge of a gas discharge tube (GDT), which enables flow rate wireless sensing through emitted electromagnetic waves. Importantly, the performance of the CSWF is not affected by the R-TENG's varied output, while the transmission distance is greater than 10 m. Real-time wireless remote monitoring of wind speed and water flow rate is successfully demonstrated. This research introduces an approach to achieve a wireless, self-powered environmental monitoring system with a diverse range of potential applications, including prolonged meteorological observations, marine environment monitoring, early warning systems for natural disasters, and remote ecosystem monitoring.

5.
Environ Sci Technol ; 58(12): 5430-5441, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38471097

RESUMO

The evaporative emissions of anthropogenic volatile organic compounds (AVOCs) are sensitive to ambient temperature. This sensitivity forms an air pollution-meteorology connection that has not been assessed on a regional scale. We parametrized the temperature dependence of evaporative AVOC fluxes in a regional air quality model and evaluated the impacts on surface ozone in the Beijing-Tianjin-Hebei (BTH) area of China during the summer of 2017. The temperature dependency of AVOC emissions drove an enhanced simulated ozone-temperature sensitivity of 1.0 to 1.8 µg m-3 K-1, comparable to the simulated ozone-temperature sensitivity driven by the temperature dependency of biogenic VOC emissions (1.7 to 2.4 µg m-3 K-1). Ozone enhancements driven by temperature-induced AVOC increases were localized to their point of emission and were relatively more important in urban areas than in rural regions. The inclusion of the temperature-dependent AVOC emissions in our model improved the simulated ozone-temperature sensitivities on days of ozone exceedance. Our results demonstrated the importance of temperature-dependent AVOC emissions on surface ozone pollution and its heretofore unrepresented role in air pollution-meteorology interactions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Temperatura , Monitoramento Ambiental/métodos , China
6.
Huan Jing Ke Xue ; 45(1): 115-122, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216463

RESUMO

Ships are important sources of carbon dioxide (CO2) emissions in Guangdong Province. The study of historical evolutions, drivers, and projected pathways of CO2 emissions can provide scientific support for the development of carbon peaking and carbon neutral strategies in Guangdong Province. The emission factor method, log-average index (LMDI) method, and scenario analysis method were adopted to estimate CO2 emissions, identify the drivers, and explore the mitigation potential from ships in Guangdong Province, separately. The results showed that:① CO2 emissions from ships in Guangdong Province increased from 3.319 4 million tons to 6.392 9 million tons from 2006 to 2020, with dry bulk carriers and container ships being the main ship types causing the increase in emissions. ② The positive drivers of CO2 emissions from ships in Guangdong Province from 2006 to 2020 were transport intensity (51%) and economic factors (49%), and the negative drivers were energy intensity (93%) and cargo class structure (7%). ③ Carbon peaking would not be reached by 2030 if Guangdong Province maintains the current policy (baseline scenario) for ship transportation. ④ Simultaneous optimization of the energy structure and promotion of the energy intensity (energy-efficient and low-carbon scenario) had a 56.51% potential to reduce CO2 emissions from ships compared to the baseline scenario. This can provide scientific support for Guangdong Province to develop a carbon peaking and carbon neutral control strategy for the shipping industry.

7.
Huan Jing Ke Xue ; 44(12): 6643-6652, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098391

RESUMO

With the rapid economic and population growth, the Pearl River Delta(PRD) Region is one of the regions in China under the greatest pressure to be carbon neutral. This study analyzed the historical evolution characteristics of the carbon dioxide(CO2) emissions and sinks from 2006-2020 and identified the key drivers of the CO2 emissions and sinks based on the exponential decomposition method. The results showed that:① from 2006 to 2020, the total carbon emissions in the PRD Region increased from 218.22 million tons to 366.30 million tons, showing a fluctuating and rising evolution characteristic, with an overall increase of 67.86%. The carbon emission had not yet reached a peak. ② From 2006 to 2020, the total carbon sinks in the PRD Region decreased from 15.67 million tons to 15.53 million tons, showing a trend of fluctuation and decline, with an overall decrease of 0.94%. The carbon sinks were far lower than the carbon emissions, and there was still a large gap between carbon neutrality. ③ The main carbon emission sectors in the PRD Region were the energy sector(40.38%) and industrial sector(26.33%), and the carbon sinks mainly came from forestland(67.92%) and farmland(18.09%). ④ During the period from the "11th Five-Year Plan" to the "13th Five-Year Plan," the main positive driving factors for carbon emissions were economic growth and population size, whereas the main negative driving factor was energy intensity(energy use per unit GDP). However, since the "13th Five-Year Plan," the CO2 emission reduction potential released by reducing energy intensity has been weakening. In the future, the PRD Region needs to address the negative driving potential of the structural adjustment in energy, industry, transportation, and land use. ⑤ During the period from the "11th Five-Year Plan" to the "13th Five-Year Plan," the main positive driving factor for the carbon sink was the green scale, which was conducted by the increase in urban green space during the "11th Five-Year Plan." The main negative driving factor for the carbon sink was the carbon sink coefficient, which was caused by the natural disaster-induced yield reductions in crops with a high carbon sink coefficient, such as rice. Green space structure adjustment should be emphasized in the future. This study can provide scientific support for developing robust carbon-neutral policies in the PRD Region.

8.
Huan Jing Ke Xue ; 44(9): 4819-4831, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699801

RESUMO

Atmospheric formaldehyde, a key precursor for ozone (O3) and secondary PM2.5, is carcinogenic and plays an important role in atmospheric photochemistry and the formation of secondary pollution. However, the lack of understanding of the emission sources of atmospheric formaldehyde limits the study on the formation mechanism of secondary pollution and the formulation of pollution control strategies. This study used the emission factor and source profile methods to establish the emission inventories of formaldehyde in Guangdong Province from 2006 to 2020 and identified the main emission sources of formaldehyde and spatial and temporal evolution characteristics. The results showed that the formaldehyde emissions in Guangdong Province fluctuated in the range of 39000-56000 tons during 2006 to 2020, exhibiting a very weak downward trend. Biomass combustion is an important source of formaldehyde emission in Guangdong Province, of which the contribution decreased from 58% in 2006 to 27% in 2020 owing to effective control measures implemented in Guangdong Province. The solvent use source became the predominant emission source of formaldehyde in 2020 by contributing up to 28%, primarily through plastic products and asphalt paving sources. The construction machinery and trucks fueled by diesel were important contributors of formaldehyde emissions from mobile sources. Although the formaldehyde emissions in the Pearl River Delta and the non-Pearl River Delta were equivalent, the spatial distributions showed that formaldehyde emission hotspots were concentrated in the center of the Pearl River Delta and the eastern and western areas of the non-Pearl River Delta. This was primarily because the solvent use and mobile sources were the main sources of formaldehyde emissions in the Pearl River Delta, whereas the biomass combustion source was the dominant source in the non-Pearl River Delta. Therefore, the formaldehyde emission mitigations of the industrial and mobile sources in the central region of the Pearl River Delta and the biomass combustion source in the western area of Guangdong should be further strengthened in the future.

9.
Sci Data ; 10(1): 629, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717027

RESUMO

Open biomass burning (OBB) is a significant source of air pollutants and greenhouse gases that have contributed to air pollution episodes in China in recent years. An accurate emission inventory is critical for the precise control of OBB. Existing OBB emission datasets are commonly based on MODIS observations, and most only have a daily-scale temporal resolution. Daily OBB emissions, however, might not accurately represent diurnal variations, peak hours, or any open burning processes. The China Hourly Open Biomass Burning Emissions (CHOBE) dataset for mainland China from 2016 to 2020 was developed in this study using the spatiotemporal fusion of multiple active fires from MODIS, VIIRS S-NPP and Himawari-8 AHI detections. At a spatial resolution of 2 km, CHOBE provided gridded CO, NOx, SO2, NH3, VOCs, PM2.5, CO2, CH4 and N2O emissions from OBB. CHOBE will enhance insight into OBB spatiotemporal variability, improves air quality and climate modelling and forecasting, and aids in the formulation of precise OBB preventive and control measures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Gases de Efeito Estufa , Biomassa , China
10.
J Environ Sci (China) ; 133: 107-117, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37451781

RESUMO

Considerable efforts have been devoted to characterising the chemical components of vehicle exhaust. However, these components may not accurately reflect the contribution of vehicle exhaust to atmospheric reactivity because of the presence of species not accounted for ("missing species") given the limitations of analytical instruments. In this study, we improved the laser photolysis-laser-induced fluorescence (LP-LIF) technique and applied it to directly measure the total OH reactivity (TOR) in exhaust gas from light-duty gasoline vehicles in China. The TOR for China I to VI-a vehicles was 15.6, 16.3, 8.4, 2.6, 1.5, and 1.6 × 104 sec-1, respectively, reflecting a notable drop as emission standards were upgraded. The TOR was comparable between cold and warm starts. The missing OH reactivity (MOR) values for China I to IV vehicles were close to zero with a cold start but were much higher with a warm start. The variations in oxygenated volatile organic compounds (OVOCs) under different emission standards and for the two start conditions were similar to those of the MOR, indicating that OVOCs and the missing species may have similar production processes. Online measurement revealed that the duration of the stable driving stage was the primary factor leading to the production of OVOCs and missing species. Our findings underscore the importance of direct measurement of TOR from vehicle exhaust and highlight the necessity of adding OVOCs and other organic reactive gases in future upgrades of emission standards, such that the vehicular contribution to atmospheric reactivity can be more effectively controlled.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Gasolina/análise , Emissões de Veículos/análise , China , Gases , Veículos Automotores , Monitoramento Ambiental
11.
Sci Total Environ ; 899: 165737, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37495146

RESUMO

Nitrous acid (HONO) plays an important role in the budget of hydroxyl radical (OH) in the atmosphere. However, current chemical transport models (CTMs) typically underestimate ambient concentrations of HONO due to a dearth of high resolution primary HONO emission inventories. To address this issue, we have established a highly resolved bottom-up HONO emission inventory for CTMs in Guangdong province, utilizing the best available domestic measured emission factors and newly obtained activity data. Our results indicate that emissions from various sources in 2020, including soil, on-road traffic, non-road traffic, biomass burning, and stationary combustion, were estimated at 21.5, 10.0, 8.2, 2.5, and 0.7 kt, respectively. Notably, the HONO emissions structure differed between the Pearl River Delta (PRD) and the non-PRD regions. Specifically, traffic sources were the dominant contributors (62 %) to HONO emissions in the PRD, whereas soil sources accounted for the majority (65 %) of those in the non-PRD. Among on-road traffic sources, diesel vehicles played a significant role, contributing 99.7 %. Comparisons with previous methods suggest that HONO emissions from diesel vehicles are underestimated by approximately 2.5 times. Higher HONO emissions, dominated by soil emissions, were observed in summer months, particularly in August. Furthermore, diesel vehicle emissions were pronounced at night, likely contributing to the nighttime accumulation of HONO and the morning peak of OH. The emission inventories developed in this study can be directly applied to widely used CTMs, such as CMAQ, CAMx, WRF-Chem, and NAQPMS, to support the simulation of OH formation and secondary air pollution.

12.
Sci Total Environ ; 888: 164182, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37196948

RESUMO

Organic carbon aerosol (OC) is a pivotal component of PM2.5 in the atmospheric environment, yet its emission sources and atmospheric behaviors remain poorly constrained in many regions. In this study, a comprehensive method based on the combination of dual­carbon isotopes (13C and 14C) and macro tracers was employed in the PRDAIO campaign performed in the megacity of Guangzhou, China. The 14C analysis showed that 60 ± 9 % of OC during the sampling campaign was associated with non-fossil sources such as biomass burning activities and biogenic emissions. It should be noted that this non-fossil contribution in OC would significantly decrease when the air masses came from the eastern cities. Overall, we found that non-fossil secondary OC (SOCNF) was the largest contributor (39 ± 10 %) to OC, followed by fossil secondary OC (SOCFF: 26 ± 5 %), fossil primary OC (POCFF: 14 ± 6 %), biomass burning OC (OCbb: 13 ± 6 %) and cooking OC (OCck: 8 ± 5 %). Also, we established the dynamic variation of 13C as a function of aged OC and the volatile organic compounds (VOCs) oxidized OC to explore the impact of aging processes on OC. Our pilot results showed that atmospheric aging was highly sensitive to the emission sources of seed OC particles, with a higher aging degree (86 ± 4 %) when more non-fossil OC particles were transferred from the northern PRD.

13.
Environ Sci Technol ; 57(4): 1592-1599, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662717

RESUMO

Formaldehyde (HCHO) plays a critical role in atmospheric photochemistry and public health. While existing studies have suggested that vehicular exhaust is an important source of HCHO, the operating condition-based diesel truck HCHO emission measurements remain severely limited due to the limited temporal resolution and accuracy of measurement techniques. In this study, we characterized the second-by-second HCHO emissions from 29 light-duty diesel trucks (LDDTs) in China over dynamometer and real-world driving tests using a portable online HCHO emission measurement system (PEMS-HCHO), considering various operating conditions. Our results suggested that the HCHO emissions from LDDTs might be underestimated by the widely used offline DNPH-HPLC method. The HCHO emissions at a 200 s cold start from China V LDDT can be up to 50 mg/start. Different driving conditions over dynamometer and real-world driving tests led to a 2-4 times difference in the HCHO emission factors (EFs). Under real-world hot-running conditions, the HCHO EFs of China III, IV, V, and VI LDDTs were 43.5 ± 35.7, 10.6 ± 14.2, 8.8 ± 5.1, and 3.2 ± 1.2 mg/km, respectively, which significantly exceeded the latest California low emission vehicle III HCHO emission standard (2.5 mg/km). These findings highlighted the significant impact of vehicle operating conditions on HCHO emissions and the urgency of regulating HCHO emissions from LDDTs in China.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Veículos Automotores , China , Formaldeído , Monitoramento Ambiental/métodos , Gasolina
14.
Sci Total Environ ; 865: 161239, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587665

RESUMO

Nowadays, the emission source and formation mechanism of fine particulate nitrate (pNO3-) in China are mired in controversy. In this study, the stable nitrogen isotope (δ15N-NO3-) and triple oxygen isotope (Δ17O-NO3-) were determined for the pNO3- samples collected at three heights under different atmospheric oxidation capacity (AOC) (Ox = O3 + NO2: 107 ± 29 µg m-3 at ground, 102 ± 28 µg m-3 at 118 m, 122 ± 23 µg m-3 at 488 m) conditions during the sampling period based on the Canton Tower, Guangzhou, China. The Bayesian mixing model showed that coal combustion was the largest contributor to pNO3- in this city, followed by biomass burning, vehicle exhaust, and soil emission. Interestingly, we found that vertical NOx and pNO3- concentrations displayed an opposite pattern owing to the different formation mechanisms among heights. The average contributions of oxidation pathways for (NO2 + OH, P1), (NO3 + DMS/HC, P2), and (N2O5 + H2O, P3) were 61 %, 12 %, and 27 % at the ground, respectively, and these values would vary greatly among heights. These results implied that both AOC and NOx loading played an important role in pNO3- production. The pNO3- displayed a positive correlation with NOx (r = 0.95) with an enhanced contribution of the P1 pathway under the relatively high AOC condition. However, pNO3- has a negative correlation with NOx (r = -0.99) with a rise of heterogeneous reaction (P2 and P3) under the relatively low AOC condition. Therefore, the current emission control strategy for air pollution in China needs to consider the AOC conditions among regions to effectively mitigate particulate air pollution.

15.
J Environ Sci (China) ; 123: 430-445, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522004

RESUMO

Because of the recent growth in ground-level ozone and increased emission of volatile organic compounds (VOCs), VOC emission control has become a major concern in China. In response, emission caps to control VOC have been stipulated in recent policies, but few of them were constrained by the co-control target of PM2.5 and ozone, and discussed the factor that influence the emission cap formulation. Herein, we proposed a framework for quantification of VOC emission caps constrained by targets for PM2.5 and ozone via a new response surface modeling (RSM) technique, achieving 50% computational cost savings of the quantification. In the Pearl River Delta (PRD) region, the VOC emission caps constrained by air quality targets varied greatly with the NOx emission reduction level. If control measures in the surrounding areas of the PRD region were not considered, there could be two feasible strategies for VOC emission caps to meet air quality targets (160 µg/m3 for the maximum 8-hr-average 90th-percentile (MDA8-90%) ozone and 25 µg/m3 for the annual average of PM2.5): a moderate VOC emission cap with <20% NOx emission reductions or a notable VOC emission cap with >60% NOx emission reductions. If the ozone concentration target were reduced to 155 µg/m3, deep NOx emission reductions is the only feasible ozone control measure in PRD. Optimization of seasonal VOC emission caps based on the Monte Carlo simulation could allow us to gain higher ozone benefits or greater VOC emission reductions. If VOC emissions were further reduced in autumn, MDA8-90% ozone could be lowered by 0.3-1.5 µg/m3, equaling the ozone benefits of 10% VOC emission reduction measures. The method for VOC emission cap quantification and optimization proposed in this study could provide scientific guidance for coordinated control of regional PM2.5 and O3 pollution in China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/prevenção & controle , Ozônio/análise , China , Material Particulado/análise
16.
Hum Cell ; 36(1): 276-285, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36163585

RESUMO

Macrophages represent the major population in the tumor microenvironment (TME). Recent studies have demonstrated circular RNAs (circRNAs) are implicated in the development and progression of different immune responses and immune diseases. However, the role of circRNAs in the development of tumor-associated macrophages (TAM) remains unknown. Here, we used the circRNA sequencing to identify the differentially expressed circRNAs (DEcircRNAs) in TAM-like cell induced by culture medium of colorectal cancer cell lines. Of note, the expression of circMERTK was remarkably overexpressed in TAMs. The ISH assay displayed that the expressions of circMERTK were mainly overlapped with macrophages marker CD68, and the abundance of circMERTK in CRC tissues was much higher than that in matched normal tissues. Functionally, circMERTK knockdown resulted in attenuated CD8+ T cell apoptosis in the co-culture assay, indicating that circMERTK could have an impact on the immunosuppressive activity of TAM-like cell. Mechanically, TAM-like cell could exert immunosuppressive activity via circMERTK/miR-125a-3p/IL-10 axis. These data suggested that circMERTK could play an important role in TAM activation, and may serve as a potential therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , RNA Circular/genética , RNA Circular/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Macrófagos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Microambiente Tumoral/genética
17.
Cancer Manag Res ; 14: 2323-2337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958946

RESUMO

Background: Gastric cancer (GC) is a common type of gastrointestinal tumor in the world. Transfer RNA (tRNA) derived fragments (tsRNAs) implicate various cancers, but their roles in GC remain unclear. Our study aimed to investigate the potential biological functions and molecular mechanisms of tsRNAs in GC. Methods: Differentially expressed tsRNAs were identified using high-throughput sequencing. The expression levels of tsRNAs were validated in 62 paired GC tissues and adjacent normal tissues using RT-qPCR. In vitro functional assays were used to evaluate the influences of tsRNAs on GC cells. The potential mechanisms underlying tsRNAs were explored using bioinformatics analysis,RT-qPCR, RNA immunoprecipitation assays and Western blot. Results: We found that tiRNA-Val-CAC-001 was downregulated in GC tissues and cells, and demonstrated that tiRNA-Val-CAC-001 was a tsRNA sheared from mature tRNA-Val and mainly localized in the cytoplasm. tiRNA-Val-CAC-001 overexpression inhibited metastasis and proliferation but promoted apoptosis of GC cells; nevertheless, tiRNA-Val-CAC-001 knockdown increased metastasis and proliferation and reduced apoptosis (P<0.05). GO and KEGG analyses indicated tiRNA-Val-CAC-001 may exert its effects via Wnt/ß-catenin signaling pathway by targeting LRP6. Following experiments showed that tiRNA-Val-CAC-001 could downregulated the protein levels of LRP6 and ß-catenin, but up-regulated p-ß-catenin, which confirmed the findings in bioinformatics analysis. Conclusion: In conclusion, tiRNA-Val-CAC-001 works as a cancer suppressor in GC by targeting LRP6 via Wnt/ß-catenin signaling pathway. tiRNA-Val-CAC-001 may serve as a therapy target and a biomarker of GC in the future. Key Points: tiRNA-Val-CAC-001 is downregulated in gastric cancer tissues and cell lines, tiRNA-Val-CAC-001 has potential to become a novel diagnostic biomarker in gastric cancer, and tiRNA-Val-CAC-001 regulates gastric cancer cells by targeting LRP6.

18.
Sci Total Environ ; 848: 157750, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35926604

RESUMO

Ammonia (NH3) is the most prevalent alkaline gas in the atmosphere and plays a critical role in air pollution and public health. However, scientific debate remains over whether agricultural emissions (e.g., livestock and fertilizer application) dominate NH3 in urban atmosphere in China, which is one of the largest NH3 emitters in the world. In this study, we first simultaneously collected the fine atmospheric particles (PM2.5) at two heights (ground and 488 m) using the atmospheric observatories in Canton Tower, Guangzhou city, China for the measurements of stable nitrogen isotope composition in ammonium (δ15N-NH4+). Our results showed that the average δ15N-NH4+ value at the ground and the 488 m observatory were 16.9 ‰ and 3.8 ‰, respectively, implying that NH4+ aerosols between the two heights probably have different sources. Moreover, we found that the δ15N-NH4+ value would sharply decrease to -16.7 ‰ when the air masses came from western Guangzhou, where the urbanization is limited compared to other surrounding areas. The Bayesian mixing model indicated that NH4+ aerosol at the ground observatory was mainly derived from non-agricultural activities (76 %, e.g., vehicular exhaust), with the rest from agricultural sources (24 %). As for the 488 m observatory, the contribution of non-agricultural sources was 53 %, which is lower than the ground observatory. This is expected as the lower air receives more impacts from the local urban emission. However, the current "bottom-up" emission inventory illustrates that only ~20 % NH3 in Guangzhou is associated with non-agricultural emissions, which is significantly lower than our δ15N-based results. Overall, our findings strongly imply that non-agricultural sources dominate the urban NH3 in Guangzhou or maybe in adjacent cities of the Pearl River Delta region as well, suggesting that the emission inventory of NH3 in this region probably is urgently needed to be revisited in future studies.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Aerossóis/análise , Poluentes Atmosféricos/análise , Amônia/análise , Compostos de Amônio/análise , Teorema de Bayes , China , Cidades , Monitoramento Ambiental , Fertilizantes , Isótopos de Nitrogênio/análise , Material Particulado/análise
19.
Environ Pollut ; 310: 119887, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932902

RESUMO

Intermediate volatility organic compounds (IVOCs) have great potential to form secondary organic aerosols (SOA) in the atmosphere. Thus, a high-resolution IVOC emission inventory is essential for the accurate simulation of SOA formation. This study developed the first nationwide on-road vehicular IVOC emission inventory in China based on localized measurement of the IVOC emission factors and volatility distributions for various vehicle types. The total vehicular IVOC emissions in China in 2019 were estimated to be 241.2 Gg. Heavy-duty trucks, light-duty trucks, and light-duty passenger vehicles contributed the most, accounting for 47.6%, 24.6%, and 16.9% of total vehicular IVOC emissions, respectively. Although much higher in number, gasoline vehicles contributed 15.0%, which was far less than the contribution of diesel vehicles. The two peaks in volatility bins B12-B13 and B16-B17 accounted for 42.2% and 23.7% of the total IVOC emissions, respectively. By gridding the emission inventory into a relatively high resolution of 0.1° × 0.1°, high-emission areas and hotspots were clearly identified. In general, eastern China had substantially higher vehicular IVOC emissions than western China. High-emission areas with emission intensity >10 Mg·grid-1 covered most of the North China Plain, Yangtze River Delta, and Pearl River Delta. The emission intensity over the downtown areas of Beijing and Shanghai exceeded 50 Mg·grid-1. In contrast, IVOC emissions over western China were relatively lower, with a network structure gathering around the traffic arteries serving inter-provincial transportation. This study underscored the importance of having a localized emission factor to better reflect the IVOC emission characteristics from Chinese vehicles and to improve the assessment of their environmental impacts.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis , China , Monitoramento Ambiental , Gasolina , Veículos Automotores , Emissões de Veículos
20.
Sensors (Basel) ; 22(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35746276

RESUMO

Natural and anthropogenic activities affect soil heavy metal pollution at different spatial scales. Quantifying the spatial variability of soil pollution and its driving forces at different scales is essential for pollution mitigation opportunities. This study applied a multivariate factorial kriging technique to investigate the spatial variability of soil heavy metal pollution and its relationship with environmental factors at multiple scales in a highly urbanized area of Guangzhou, South China. We collected 318 topsoil samples and used five types of environmental factors for the attribution analysis. By factorial kriging, we decomposed the total variance of soil pollution into a nugget effect, a short-range (3 km) variance and a long-range (12 km) variance. The distribution of patches with a high soil pollution level was scattered in the eastern and northwestern parts of the study domain at a short-range scale, while they were more clustered at a long-range scale. The correlations between the soil pollution and environmental factors were either enhanced or counteracted across the three distinct scales. The predictors of soil heavy metal pollution changed from the soil physiochemical properties to anthropogenic dominated factors with the studied scale increase. Our study results suggest that the soil physiochemical properties were a good proxy to soil pollution across the scales. Improving the soil physiochemical properties such as increasing the soil organic matter is essentially effective across scales while restoring vegetation around pollutant sources as a nature-based solution at a large scale would be beneficial for alleviating local soil pollution.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA