Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 456: 140040, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38878539

RESUMO

The development of new sensors for on-site food toxin monitoring that combine extraction, analytes distinction and detection is important in resource-limited environments. Surface-enhanced Raman scattering (SERS)-based signal readout features fast response and high sensitivity, making it a powerful method for detecting mycotoxins. In this work, a SERS-based assay for the detection of multiple mycotoxins is presented that combines extraction and subsequent detection, achieving an analytically relevant detection limit (∼ 1 ng/mL), which is also tested in corn samples. This sensor consists of a magnetic-core and mycotoxin-absorbing polydopamine-shell, with SERS-active Au nanoparticles on the outer surface. The assay can concentrate multiple mycotoxins, which are identified through multiclass partite least squares analysis based on their SERS spectra. We developed a strategy for the analysis of multiple mycotoxins with minimal sample pretreatment, enabling in situ analytical extraction and subsequent detection, displaying the potential to rapidly identify lethal mycotoxin contamination on site.

2.
Insect Mol Biol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613398

RESUMO

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

3.
Pest Manag Sci ; 80(8): 3752-3762, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38488318

RESUMO

BACKGROUND: Voltage-dependent anion-selective channels (VDACs) serve as pore proteins within the mitochondrial membrane, aiding in the regulation of cell life and cell death. Although the occurrence of cell death is crucial for defense against virus infection, the function played by VDAC in Bombyx mori, in response to the influence of Bombyx mori nucleopolyhedrovirus (BmNPV), remains unclear. RESULTS: BmVDAC was found to be relatively highly expressed both during embryonic development, and in the Malpighian tubule and midgut. Additionally, the expression levels of BmVDAC were found to be different among silkworm strains with varying levels of resistance to BmNPV, strongly suggesting a connection between BmVDAC and virus infection. To gain further insight into the function of BmVDAC in BmNPV, we employed RNA interference (RNAi) to silence and overexpress it by pIZT/V5-His-mCherry. The results revealed that BmVDAC is instrumental in developing the resistance of host cells to BmNPV infection in BmN cell-line cells, which was further validated as likely to be associated with initiating programmed cell death (PCD). Furthermore, we evaluated the function of BmVDAC in another insect, Spodoptera exigua. Knockdown of the BmVDAC homolog in S. exigua, SeVDAC, made the larvae more sensitive to BmNPV. CONCLUSION: We have substantiated the pivotal role of BmVDAC in conferring resistance against BmNPV infection, primarily associated with the initiation of PCD. The findings of this study shine new light on the molecular mechanisms governing the silkworm's response to BmNPV infection, thereby supporting innovative approaches for pest biocontrol. © 2024 Society of Chemical Industry.


Assuntos
Apoptose , Bombyx , Larva , Nucleopoliedrovírus , Canais de Ânion Dependentes de Voltagem , Animais , Bombyx/virologia , Bombyx/genética , Nucleopoliedrovírus/fisiologia , Larva/virologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Interferência de RNA
4.
Insect Mol Biol ; 33(3): 246-258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38323672

RESUMO

Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.


Assuntos
Bombyx , Proteínas de Insetos , Nucleopoliedrovírus , Animais , Bombyx/enzimologia , Bombyx/genética , Bombyx/virologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Larva/virologia , Metaloproteínas/metabolismo , Metaloproteínas/genética , Cofatores de Molibdênio , Nucleopoliedrovírus/fisiologia , Interferência de RNA , Ácido Úrico/metabolismo
5.
Anal Chim Acta ; 1292: 342199, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309856

RESUMO

In this study, a bimetallic surfaced-enhanced Raman spectroscopy (SERS)-active substrate consisting of AuNR@AgNCs was proposed for the rapid detection of dithianon. Due to the significant synergistic enhancement of the core-shell nanocuboids, the obtained AuNR@AgNC substrate exhibited excellent SERS performance. The simulation findings supported the practical SERS results and demonstrated that interactions were mainly maintained by the nitrile functional group. The AuNR@AgNCs could be used to detect dithianon with an LOD value of 20 nM. Moreover, dithianon in river water and apple juice could be detected with recovery in the satisfactory ranges of 97.41%-98.35% and 97.77%-98.70%, respectively, by using this substrate under optimal conditions, indicating that the AuNR@AgNC substrate could serve as an excellent SERS detection platform for pesticide residues in fruit.


Assuntos
Malus , Nanopartículas Metálicas , Resíduos de Praguicidas , Análise Espectral Raman/métodos , Malus/química , Resíduos de Praguicidas/análise , Frutas/química , Sucos de Frutas e Vegetais , Ouro/química , Nanopartículas Metálicas/química
6.
IEEE Trans Med Imaging ; 43(2): 794-806, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782590

RESUMO

The superiority of magnetic resonance (MR)-only radiotherapy treatment planning (RTP) has been well demonstrated, benefiting from the synthesis of computed tomography (CT) images which supplements electron density and eliminates the errors of multi-modal images registration. An increasing number of methods has been proposed for MR-to-CT synthesis. However, synthesizing CT images of different anatomical regions from MR images with different sequences using a single model is challenging due to the large differences between these regions and the limitations of convolutional neural networks in capturing global context information. In this paper, we propose a multi-scale tokens-aware Transformer network (MTT-Net) for multi-region and multi-sequence MR-to-CT synthesis in a single model. Specifically, we develop a multi-scale image tokens Transformer to capture multi-scale global spatial information between different anatomical structures in different regions. Besides, to address the limited attention areas of tokens in Transformer, we introduce a multi-shape window self-attention into Transformer to enlarge the receptive fields for learning the multi-directional spatial representations. Moreover, we adopt a domain classifier in generator to introduce the domain knowledge for distinguishing the MR images of different regions and sequences. The proposed MTT-Net is evaluated on a multi-center dataset and an unseen region, and remarkable performance was achieved with MAE of 69.33 ± 10.39 HU, SSIM of 0.778 ± 0.028, and PSNR of 29.04 ± 1.32 dB in head & neck region, and MAE of 62.80 ± 7.65 HU, SSIM of 0.617 ± 0.058 and PSNR of 25.94 ± 1.02 dB in abdomen region. The proposed MTT-Net outperforms state-of-the-art methods in both accuracy and visual quality.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X , Redes Neurais de Computação , Espectroscopia de Ressonância Magnética
7.
Cancer Imaging ; 23(1): 105, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891702

RESUMO

BACKGROUND: The anatomical infiltrated brain area and the boundaries of gliomas have a significant impact on clinical decision making and available treatment options. Identifying glioma-infiltrated brain areas and delineating the tumor manually is a laborious and time-intensive process. Previous deep learning-based studies have mainly been focused on automatic tumor segmentation or predicting genetic/histological features. However, few studies have specifically addressed the identification of infiltrated brain areas. To bridge this gap, we aim to develop a model that can simultaneously identify infiltrated brain areas and perform accurate segmentation of gliomas. METHODS: We have developed a transformer-based multi-task deep learning model that can perform two tasks simultaneously: identifying infiltrated brain areas segmentation of gliomas. The multi-task model leverages shaped location and boundary information to enhance the performance of both tasks. Our retrospective study involved 354 glioma patients (grades II-IV) with single or multiple brain area infiltrations, which were divided into training (N = 270), validation (N = 30), and independent test (N = 54) sets. We evaluated the predictive performance using the area under the receiver operating characteristic curve (AUC) and Dice scores. RESULTS: Our multi-task model achieved impressive results in the independent test set, with an AUC of 94.95% (95% CI, 91.78-97.58), a sensitivity of 87.67%, a specificity of 87.31%, and accuracy of 87.41%. Specifically, for grade II-IV glioma, the model achieved AUCs of 95.25% (95% CI, 91.09-98.23, 84.38% sensitivity, 89.04% specificity, 87.62% accuracy), 98.26% (95% CI, 95.22-100, 93.75% sensitivity, 98.15% specificity, 97.14% accuracy), and 93.83% (95%CI, 86.57-99.12, 92.00% sensitivity, 85.71% specificity, 87.37% accuracy) respectively for the identification of infiltrated brain areas. Moreover, our model achieved a mean Dice score of 87.60% for the whole tumor segmentation. CONCLUSIONS: Experimental results show that our multi-task model achieved superior performance and outperformed the state-of-the-art methods. The impressive performance demonstrates the potential of our work as an innovative solution for identifying tumor-infiltrated brain areas and suggests that it can be a practical tool for supporting clinical decision making.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Humanos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Glioma/diagnóstico por imagem , Área Sob a Curva , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/diagnóstico por imagem
8.
Arch Insect Biochem Physiol ; 114(4): e22054, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37700521

RESUMO

Signaling pathways regulate the transmission of signals during organism growth and development, promoting the smooth and accurate completion of numerous physiological and biochemical reactions. The extracellular signal-regulated kinase (ERK) signaling pathway is an essential pathway involved in regulating various physiological processes, such as cell proliferation, differentiation, adhesion, migration, and more. This pathway also contributes to several important physiological processes in silkworms, including protein synthesis, reproduction, and immune defense against pathogens. Organizing related studies on the ERK signaling pathway in silkworms can provide a better understanding of its mechanism in Lepidopterans and develop a theoretical foundation for improving cocoon production and new strategies for pest biological control.


Assuntos
Bombyx , MAP Quinases Reguladas por Sinal Extracelular , Lepidópteros , Animais , Bombyx/genética , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Transdução de Sinais
9.
Pestic Biochem Physiol ; 194: 105485, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532315

RESUMO

The widespread use of pyrethroid pesticides has brought serious economic losses in sericulture, but there is still no viable solution. The key to solving the problem is to improve silkworm resistance to pesticides, which depends on understanding the resistance mechanism of silkworms to pesticides. This study aimed to use transcriptomes to understand the underlying mechanism of silkworm resistance to fenpropathrin, which will provide a theoretical molecular reference for breeding pesticide-resistant silkworm varieties. In this study, the fat bodies of two strains with differential resistance after 12 h of fenpropathrin feeding were analyzed using RNA-Seq. After feeding fenpropathrin, 760 differentially expressed genes (DEGs) were obtained in the p50(r) strain and 671 DEGs in the 8y strain. The DEGs involved in resistance to fenpropathrin were further identified by comparing the two strains, including 207 upregulated DEGs in p50(r) and 175 downregulated DEGs in 8y. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these fenpropathrin-related DEGs are mainly enriched in the metabolism and transporter pathways. Moreover, 28 DEGs involved in the metabolic pathway and 18 in the transporter pathway were identified. Furthermore, organic cation transporter protein 6 (BmOCT6), a transporter pathway member, was crucial in enhancing the tolerance of BmN cells to fenpropathrin. Finally, the knockdown of the expression of the homologs of BmOCT6 in Glyphodes pyloalis (G. pyloalis) significantly decreased the resistant level of larvae to fenpropathrin. The findings showed that the metabolism and transporter pathways are associated with resistance to fenpropathrin in silkworm, and OCT6 is an effective and potential target not only for silkworm breeding but also for pest biocontrol.


Assuntos
Bombyx , Lepidópteros , Praguicidas , Piretrinas , Animais , Bombyx/genética , Bombyx/metabolismo , Transcriptoma , Lepidópteros/genética , Corpo Adiposo , Perfilação da Expressão Gênica , Piretrinas/toxicidade , Piretrinas/metabolismo , Praguicidas/metabolismo
10.
Anal Chim Acta ; 1277: 341680, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604605

RESUMO

Accurate and sensitive detection of chloramphenicol (CAP) in natural samples is essential for ensuring human health. Herein, an enzyme-regulated fluorescence sensor using Fe3O4@COF/Fe3+ probe, is developed for CAP determination. Fe3O4@COF, synthesized via hydrothermal method, exhibits dual functions as a magnetic carrier and signal probe. Bovine serum albumin conjugated-chloramphenicol, adsorbed on the surface of Fe3O4@COF, competes with CAP for antibody binding. The antibody interacts with alkaline phosphatase via the biotin-streptavidin system. Meanwhile, ascorbic acid, produced from the enzyme-catalyzed reaction dominated by alkaline phosphatase, effectively restores the fluorescence of Fe3O4@COF that is quenched by Fe3+. After experimental verification and gradual optimization, a logarithmic linear relationship between CAP concentration and fluorescence intensity is established in the range of 2 × 10-4∼10 µg mL-1, with a good limit of detection (9.2 × 10-5 µg mL-1). Proposed method exhibits excellent stability (15 days) and reusability (8 cycles), providing a sensitive and reliable method for accurate CAP detection. The readouts show good agreement with HPLC and recoveries during laboratory and natural CAP analysis.


Assuntos
Fosfatase Alcalina , Corantes Fluorescentes , Humanos , Anticorpos , Cloranfenicol , Imunoensaio
11.
Food Chem ; 429: 136927, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481984

RESUMO

An indirect and ultrasensitive ratiometric molecularly imprinted (MIP) sensor, based on metal ion reoxidation, is introduced for glyphosate (GLY) determination in fruit. As high-performance signal amplification substrates, carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) are conveniently modified on GCE. The artificial antibody-MIP membrane, presents typical three-dimensional structure to GLY template. Built-in reference methylene blue (MB) is directly electropolymerized on MWCNTs-Au/GCE. Particularly, Cu2+ and GLY interestingly form chelate complex, and the Cu2+ (ICu) in Cu(Ⅱ)-GLY-complex can be reoxidized, and indirectly quantizes GLY. The reference signal (IMB) presents noteworthy stability with different GLY levels, and the ratiometric readout (ICu/IMB) is recognized as a more trustworthy indicator to quantize GLY. Proposed sensor presents broad range as 1.73 âˆ¼ 400 ng/mL, and limit of detection is well found as 0.24 ng/mL (S/N = 3). Finally, as-fabricated method is verified with standard HPLC in real-fruit-sample, and the errors and recovery rates are calculated as 3.4% âˆ¼ 6.7% and 94.4% âˆ¼ 104.6%, respectively.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Nanotubos de Carbono , Ouro/química , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Frutas , Impressão Molecular/métodos , Polímeros/química , Eletrodos , Limite de Detecção , Glifosato
12.
Insects ; 14(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37367321

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious threat to sericulture. Nevertheless, no effective control strategy is currently available. The innate immunity of silkworm is critical in the antiviral process. Exploring its molecular mechanism provides theoretical support for the prevention and treatment of BmNPV. Insect hormone receptors play an essential role in regulating host immunity. We found a correlation between Bombyx mori ecdysone receptor B1 (BmEcR-B1) and BmNPV infection, whereas the underlying mechanism remains unclear. In this study, the expression patterns and sequence characteristics of BmEcR-B1 and its isoform, BmEcR-A, were initially analyzed. BmEcR-B1 was found to be more critical than BmEcR-A in silkworm development and responses to BmNPV. Moreover, RNAi and an overexpression in BmN cells showed BmEcR-B1 had antiviral effects in the presence of 20-hydroxyecdysone (20E); Otherwise, it had no antiviral activity. Furthermore, BmEcR-B1 was required for 20E-induced apoptosis, which significantly suppressed virus infection. Finally, feeding 20E had no significant negative impacts on larval growth and the cocoon shell, suggesting the regulation of this pathway has practical value in controlling BmNPV in sericulture. The findings of this study provide important theoretical support for understanding the mechanism of the silkworm innate immune system in response to BmNPV infection.

13.
Insect Mol Biol ; 32(5): 558-574, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37209025

RESUMO

The white epidermis of silkworms is due to the accumulation of uric acid crystals. Abnormal silkworm uric acid metabolism decreases uric acid production, leading to a transparent or translucent phenotype. The oily silkworm op50 is a mutant strain with a highly transparent epidermis derived from the p50 strain. It shows more susceptibility to Bombyx mori nucleopolyhedrovirus (BmNPV) infection than the wild type; however, the underlying mechanism is unknown. This study analysed the changes in 34 metabolites in p50 and op50 at different times following BmNPV infection based on comparative metabolomics. The differential metabolites were mainly clustered in six metabolic pathways. Of these, the uric acid pathway was identified as critical for resistance in silkworms, as feeding with inosine significantly enhanced larval resistance compared to other metabolites and modulated other metabolic pathways. Additionally, the increased level of resistance to BmNPV in inosine-fed silkworms was associated with the regulation of apoptosis, which is mediated by the reactive oxygen species produced during uric acid synthesis. Furthermore, feeding the industrial strain Jingsong (JS) with inosine significantly increased the level of larval resistance to BmNPV, indicating its potential application in controlling the virus in sericulture. These results lay the foundation for clarifying the resistance mechanism of silkworms to BmNPV and provide new strategies and methods for the biological control of pests.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Bombyx/genética , Ácido Úrico/metabolismo , Nucleopoliedrovírus/fisiologia , Apoptose , Larva
14.
Anal Chem ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36621809

RESUMO

Ochratoxin A (OTA) frequently contaminates grains and consequently threatens human health. Herein, we develop a regenerable signal probe and apply it to a Au-based screen-printed electrode module (SPE) for OTA determination. The signal probe, containing a structural covalent organic framework, gold nanoparticles (AuNPs), indicative methylene blue (MB), and a highly selective aptamer, is synthesized with hydrothermal and self-assembly methods. The SPE is permanently functionalized with Prussian blue (PB), AuNPs, and semicomplementary ssDNA. The signal probe, absorbed onto this SPE via hybridization, is competitively expelled by OTA, providing a ratiometric readout of ΔIMB/IPB. Probe regeneration, to erase expired COF-Au-MB-Apt after each analysis, is established with the synergy of OTA-conducted Apt-ssDNA dissociation and on-chip thermal regulation. This advantage powerfully guarantees reduplicative analyses by avoiding irreversible Apt-OTA combination and accumulation on the sensing interface. Regenerations are performed in repetitive cycles (N = 7) with 98.5% reproduction efficiency, and IMB and IPB fluctuations are calculated as 1.45 and 1.12%. This method shows log-linear OTA response in a wide range from 0.2 pg/mL to 0.6 µg/mL, and the limit of detection is 0.12 pg/mL. During natural OTA determinations, recommended readouts match well with HPLC with less than 4.82% relative error.

15.
Food Chem ; 411: 135431, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36681022

RESUMO

Analogous density foreign matter (ADFM) embedded in soy protein meat semi-finished (SFSPM) is hidden by SFSPM and has similar acoustic impedance features to SFSPM, which makes non-destructive testing techniques such as computer vision (CV), reflectance spectroscopy and ultrasound imaging inappropriate for ADFM, which not only seriously affects the quality of soy protein meat (SPM) products but also increases the safety risk to consumers. In this study, to locate and separate ADFM by using transmission hyperspectral imaging (T-HSI) technique which is sensitive to chemical composition and highlight internal contours. The optimal discrimination model SVM + PCA + MSC + SPA was constructed using transmission spectral information with an accuracy of 95.00 %. The visualization results based on the optimal model showed clearer localization results than CV and ultrasound imaging. The study demonstrated that the advantages of T-HSI technology in detecting and locating ADFM inside SFSPM, which provides a basis for improving the production quality and safety of SPM.


Assuntos
Produtos da Carne , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Imageamento Hiperespectral , Proteínas de Soja , Carne/análise
16.
Anal Chem ; 95(5): 2741-2749, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36689633

RESUMO

Residues of organophosphorus pesticides (OPs) raise considerable concern, while identifying OPs from unknown sources is still a challenge to onsite fluorescence techniques. Herein, a dual-emission-capture sensor module, based on a TPB-DMTP@S-CDs/MnO2 fluorescence composite, is developed for OP fingerprint recognition. TPB-DMTP@S-CDs/MnO2, synthesized by a hydrothermal method and self-assembly, is spectrographically validated as a dual-wavelength fluorescence source. OP-sensitive catalysis (acetylcholinesterase on acetylthiocholine chloride) is designed to regulate fluorescence by decomposing quenchable MnO2. A flexibly fabricated sensor module supports the optimal dual-wavelength fluorescence excitations and captures and converts fluorescence emissions into equivalent photocurrents for feasible access. The most prominent finding is that dual-fluorescence emissions alternatively respond to levels, species, and multi-pH pretreatments of OPs due to varied MnO2 sizes and distributions. Therefore, OP fingerprint recognition is conducted by refining the multidimensional information from fluorescence-triggered photocurrents and preset hydrolyzation using principal component analysis and the rule of maximum covariance. The recommended method provides a wide dynamic range (1 × 10-6 ∼ 12 µg mL-1), a good limit of detection (7.9 × 10-7 µg mL-1), 15-day stability, and good selectivity to guarantee fingerprint recognition. For laboratory and natural samples, this method credibly identifies a single kind of OPs from multiple species at trace levels (10-5 µg mL-1) and performs well in two-component and multicomponent analyses.

17.
Arch Insect Biochem Physiol ; 110(4): e21896, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35355317

RESUMO

Pesticides are frequently used to control pests in agriculture due to their ease of use and effectiveness, but their use causes serious economic losses to sericulture when their production overlaps with agriculture. However, no suitable internal reference genes (RGs) have been reported in the study of silkworms in response to pesticides. In this study, a standard curve was established to detect the expression levels of seven RGs in different tissues of different silkworm strains after feeding with pesticides using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), including BmGAPDH, BmActin3, BmTBP, BmRPL3, Bm28sRNA, Bmα-tubulin, and BmUBC, and the stability of them was evaluated by using NormFinder, geNorm, Delta CT, BestKeeper, and RefFinder. The results showed that BmGAPDH and Bmα-tubulin were relatively stable in the midgut after feeding with fenvalerate, BmGAPDH and Bmactin3 were relatively stable in the fat body, and Bmα-tubulin and Bmactin3 were relatively stable in the hemolymph, indicating that Bmactin3 was the most suitable RG when evaluating fenvalerate, followed by BmGAPDH and Bmα-tubulin. Besides, BmGAPDH and Bmactin3 were relatively stable in the midgut after treatment with DDVP, BmGAPDH and Bmα-tubulin were relatively stable in the fat body, and BmGAPDH and Bmα-tubulin were relatively stable in the hemolymph, indicating that Bmα-tubulin was the most stable RG when evaluating DDVP, followed by BmGAPDH and Bmactin3. Of note, BmGAPDH was shared by the two pesticides. The results will be valuable for RG selection in studying the pesticide response mechanism of silkworms and other lepidopteran insects.


Assuntos
Bombyx , Lepidópteros , Praguicidas , Animais , Bombyx/genética , Diclorvós , Perfilação da Expressão Gênica , Lepidópteros/genética , Praguicidas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Tubulina (Proteína)/genética
18.
Food Chem ; 383: 132445, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35182867

RESUMO

A ratiometric electrochemical immunosensor, based on DNA tetrahedron nanostructure (DTNS), is introduced for vegetable phoxim determination. DTNS spontaneously adheres onto gold-nanoparticle-modified electrode and forms stable three-dimensional structure, providing plenty of binding sites to the built-in reference, methylene blue (MB). Monoclonal antibody (m-Ab) is vertically linked onto DTNS vertex, selectively responses antigenic phoxim, and promotes the target signal of IPHO. Thus, a ratiometric indicator, IPHO/IMB, is sensibly established with the target signal (IPHO) and the reference signal (IMB). Modifications, mechanisms and advances of the proposed method are subsequently examined with morphological methods and electrochemical experiments. This method brings considerable advances in analytical behaviors. The ratiometric signal presents better performance than solo system in repeatability and long-time stability. As-fabricated sensor presents wide dynamic range as 0.1∼30 µg/L, and limit of detection is well defined as 0.003 µg/L (S/N = 3). Finally, this method is verified with real-vegetable-sample analysis, certified HPLC and recovery test.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , DNA/química , Técnicas Eletroquímicas/métodos , Ouro/química , Imunoensaio , Limite de Detecção , Azul de Metileno/química , Compostos Organotiofosforados , Verduras
19.
Foods ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681497

RESUMO

In the present study, germinated brown rice (GBR) from three Japonica and three Indica rice cultivars were subjected to metabolomics analysis and volatile profiling. The statistical assessment and pathway analysis of the metabolomics data demonstrated that in spite of significant metabolic changes in response to the germination treatment, the Japonica rice cultivars consistently expressed higher levels of several health-promoting compounds, such as essential amino acids and γ-aminobutyric acid (GABA), than the Indica cultivars. No clear discriminations of the volatile profiles were observed in light of the subspecies, and the concentrations of the volatile organic compounds (VOCs), including alkenes, aldehydes, furans, ketones, and alcohols, all exhibited significant reductions ranging from 26.8% to 64.1% after the germination. The results suggest that the Japonica cultivars might be desirable as the raw materials for generating and selecting GBR food products for health-conscious consumers.

20.
Food Chem ; 358: 129898, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933961

RESUMO

The sensitive detection of pesticides in complex environment is important but still challenging in presence of organic-rich water sample and food matrix. Herein, we reported a nitrile-mediated SERS immunosensor for sensitive and optical anti-interference determination of imidacloprid. Raman tag contained CN bond could provide a sharp characteristic peak in the Raman-silent spectral window (1800 ~ 2800 cm-1), which could resist the optical noises from the fingerprint region (<1800 cm-1). Aucore-Agshell bimetallic nanocuboid (AuNR@Ag) connected with antigen and Raman tag was used as Raman probe, while Fe3O4 magnetic nanoparticle functionalized with anti-imidacloprid antibody was applied as signal enhancer. Owing to the specific recognition ability between antigen and antibody, the competitive system with imidacloprid was formed. Under the optimal condition, the linear relationship was developed in the range of 10-400 nM. Finally, the SERS immunosensor was successfully applied to determine imidacloprid in real samples with recoveries from 96.8% to 100.5%.


Assuntos
Análise de Alimentos/métodos , Imunoensaio/métodos , Neonicotinoides/análise , Nitrocompostos/análise , Análise Espectral Raman/métodos , Contaminação de Alimentos/análise , Ouro/química , Imunoensaio/instrumentação , Nanopartículas Magnéticas de Óxido de Ferro/química , Neonicotinoides/imunologia , Nitrocompostos/imunologia , Praguicidas/análise , Praguicidas/imunologia , Sensibilidade e Especificidade , Análise Espectral Raman/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA