Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 707: 135472, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31759713

RESUMO

The migration of U(VI) through the engineered barrier system (EBS) and into the natural environment in a geological repository for high-level radioactive waste depends on the chemical and physical environment of the repository. Modeling is widely used to understand the risk associated with migration of U(VI) for different barrier designs for repository sites. In this study, coupled thermal, hydrological, and chemical (THC) models were used to evaluate the risk of U(VI) migration at a proposed deep geological repository in northwestern China. The models incorporated two-site protolysis nonelectrostatic surface complexation, dissolution/precipitation of minerals and cation exchange as the major reactions controlling U(VI) migration. Modeling results showed that the main factors influencing U(VI) migration were pH, and the smectite content in the bentonite, as dissolution of the hydrous uranium oxide mineral schoepite is suppressed at higher pH values, and smectite is the most important adsorbent of dissolved U(VI). Therefore, an alkaline bentonite with a smectite volume fraction of >0.6 is suggested as the backfill material for this EBS. The THC model results also showed that in 100,000 years, U(VI) migration is constrained within EBS if the suggested bentonite is used as backfill in a repository that is hosted within Beishan granite. This study provides a feasible method for selecting a bentonite backfill and predicting the effect of environmental conditions on U(VI) migration.

2.
Environ Sci Technol ; 50(13): 7010-8, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27267666

RESUMO

Microbial souring in oil reservoirs produces toxic, corrosive hydrogen sulfide through microbial sulfate reduction, often accompanying (sea)water flooding during secondary oil recovery. With data from column experiments as constraints, we developed the first reactive-transport model of a new candidate inhibitor, perchlorate, and compared it with the commonly used inhibitor, nitrate. Our model provided a good fit to the data, which suggest that perchlorate is more effective than nitrate on a per mole of inhibitor basis. Critically, we used our model to gain insight into the underlying competing mechanisms controlling the action of each inhibitor. This analysis suggested that competition by heterotrophic perchlorate reducers and direct inhibition by nitrite produced from heterotrophic nitrate reduction were the most important mechanisms for the perchlorate and nitrate treatments, respectively, in the modeled column experiments. This work demonstrates modeling to be a powerful tool for increasing and testing our understanding of reservoir-souring generation, prevention, and remediation processes, allowing us to incorporate insights derived from laboratory experiments into a framework that can potentially be used to assess risk and design optimal treatment schemes.


Assuntos
Percloratos , Enxofre , Nitratos/farmacologia , Nitritos , Bactérias Redutoras de Enxofre/efeitos dos fármacos
3.
Environ Sci Technol ; 47(1): 298-305, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22950750

RESUMO

Capturing carbon dioxide (CO(2)) emissions from industrial sources and injecting the emissions deep underground in geologic formations is one method being considered to control CO(2) concentrations in the atmosphere. Sequestering CO(2) underground has its own set of environmental risks, including the potential migration of CO(2) out of the storage reservoir and resulting acidification and release of trace constituents in shallow groundwater. A field study involving the controlled release of groundwater containing dissolved CO(2) was initiated to investigate potential groundwater impacts. Dissolution of CO(2) in the groundwater resulted in a sustained and easily detected decrease of ~3 pH units. Several trace constituents, including As and Pb, remained below their respective detections limits and/or at background levels. Other constituents (Ba, Ca, Cr, Sr, Mg, Mn, and Fe) displayed a pulse response, consisting of an initial increase in concentration followed by either a return to background levels or slightly greater than background. This suggests a fast-release mechanism (desorption, exchange, and/or fast dissolution of small finite amounts of metals) concomitant in some cases with a slower release potentially involving different solid phases or mechanisms. Inorganic constituents regulated by the U.S. Environmental Protection Agency remained below their respective maximum contaminant levels throughout the experiment.


Assuntos
Dióxido de Carbono/química , Água Subterrânea/química , Poluentes Químicos da Água/química , Arsênio/análise , Sequestro de Carbono , Fluoretos/análise , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Metais/análise , Modelos Teóricos , Dióxido de Silício , Solubilidade , Movimentos da Água , Poluentes Químicos da Água/análise
4.
J Contam Hydrol ; 126(1-2): 45-60, 2011 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21783271

RESUMO

The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO(2)(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO(3)(-) and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.


Assuntos
Bentonita/química , Modelos Teóricos , Resíduos Radioativos , Gerenciamento de Resíduos , Adsorção , Carbonato de Cálcio/química , Osmose , Dióxido de Silício , Temperatura
5.
J Contam Hydrol ; 98(3-4): 115-27, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18468720

RESUMO

Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX (Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.


Assuntos
Bentonita/química , Modelos Químicos , Prótons , Contaminação Radioativa da Água/prevenção & controle , Água/análise , Concentração de Íons de Hidrogênio , Porosidade , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA