Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38662927

RESUMO

BACKGROUND: Recurrent bone and joint infection with Staphylococcus aureus is common. S. aureus can invade and persist in osteoblasts and fibroblasts, but little is known about this mechanism in chondrocytes. If S. aureus were able to invade and persist within chondrocytes, this could be a difficult compartment to treat. QUESTION/PURPOSE: Can S. aureus infiltrate and persist intracellularly within chondrocytes in vitro? METHODS: Cell lines were cultured in vitro and infected with S. aureus. Human chondrocytes (C20A4) were compared with positive controls of human osteoblasts (MG63) and mouse fibroblasts (NIH3T3), which have previously demonstrated S. aureus invasion and persistence (human fibroblasts were not available to us). Six replicates per cell type were followed for 6 days after infection. Cells were treated daily with antibiotic media for extracellular killing. To determine whether S. aureus can infiltrate chondrocytes, fluorescence microscopy was performed to qualitatively assess the presence of intracellular bacteria, and intracellular colony-forming units (CFU) were enumerated 2 hours after infection. To determine whether S. aureus can persist within chondrocytes, intracellular CFUs were enumerated from infected host cells each day postinfection. RESULTS: S. aureus invaded human chondrocytes (C20A4) at a level (2.8 x 105 ± 5.5 x 104 CFUs/mL) greater than positive controls of human osteoblasts (MG63) (9.5 x 102 ± 2.5 x 102 CFUs/mL; p = 0.01) and mouse fibroblasts (NIH3T3) (9.1 x 104 ± 2.5 x 104 CFUs/mL; p = 0.02). S. aureus also persisted within human chondrocytes (C20A4) for 6 days at a level (1.4 x 103 ± 5.3 x 102 CFUs/mL) greater than that of human osteoblasts (MG63) (4.3 x 102 ± 3.5 x 101 CFUs/mL; p = 0.02) and mouse fibroblasts (NIH3T3) (0 CFUs/mL; p < 0.01). S. aureus was undetectable within mouse fibroblasts (NIH3T3) after 4 days. There were 0 CFUs yielded from cell media, confirming extracellular antibiotic treatment was effective. CONCLUSION: S. aureus readily invaded human chondrocytes (C20A4) in vitro and persisted viably for 6 days after infection, evading extracellular antibiotics. Chondrocytes demonstrated a greater level of intracellular invasion and persistence by S. aureus than positive control human osteoblast (MG63) and mouse fibroblast (NIH3T3) cell lines. CLINICAL RELEVANCE: Chondrocyte invasion and persistence may contribute to recurrent bone and joint infections. Additional research should assess longer periods of persistence and whether this mechanism is present in vivo.

2.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260458

RESUMO

How we move our bodies affects how we perceive sound. For instance, we can explore an environment to seek out the source of a sound and we can use head movements to compensate for hearing loss. How we do this is not well understood because many auditory experiments are designed to limit head and body movements. To study the role of movement in hearing, we developed a behavioral task called sound-seeking that rewarded mice for tracking down an ongoing sound source. Over the course of learning, mice more efficiently navigated to the sound. We then asked how auditory behavior was affected by hearing loss induced by surgical removal of the malleus from the middle ear. An innate behavior, the auditory startle response, was abolished by bilateral hearing loss and unaffected by unilateral hearing loss. Similarly, performance on the sound-seeking task drastically declined after bilateral hearing loss and did not recover. In striking contrast, mice with unilateral hearing loss were only transiently impaired on sound-seeking; over a recovery period of about a week, they regained high levels of performance, increasingly reliant on a different spatial sampling strategy. Thus, even in the face of permanent unilateral damage to the peripheral auditory system, mice recover their ability to perform a naturalistic sound-seeking task. This paradigm provides an opportunity to examine how body movement enables better hearing and resilient adaptation to sensory deprivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA