Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Appl Environ Microbiol ; 90(10): e0119124, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39283105

RESUMO

Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. In the present study, we constructed a microbial platform for the high-level production of a sesquiterpene from Catharanthus roseus, 5-epi-jinkoheremol, which exhibits strong fungicidal activity. First, the mevalonate and sterol biosynthesis pathways were optimized in engineered yeast to increase the metabolic flux toward the biosynthesis of the precursor farnesyl pyrophosphate. Then, the transcription factor Hac1- and m6A writer Ime4-based metabolic engineering strategies were implemented in yeast to increase 5-epi-jinkoheremol production further. Next, protein engineering was performed to improve the catalytic activity and enhance the stability of the 5-epi-jinkoheremol synthase TPS18, resulting in the variant TPS18I21P/T414S, with the most improved properties. Finally, the titer of 5-epi-jinkoheremol was elevated to 875.25 mg/L in a carbon source-optimized medium in shake flask cultivation. To the best of our knowledge, this is the first study to construct an efficient microbial cell factory for the sustainable production of this antifungal sesquiterpene.IMPORTANCEBiofungicides represent a new and sustainable tool for the control of crop fungal diseases. However, hindered by the high cost of biofungicide production, their use is not as popular as expected. Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. We previously identified a promising sesquiterpenoid biofungicide, 5-epi-jinkoheremol. Here, we constructed a microbial platform for the high-level production of this chemical. The metabolic engineering of the terpene biosynthetic pathway was firstly employed to increase the metabolic flux toward 5-epi-jinkoheremol production. However, the limited catalytic activity of the key enzyme, TPS18, restricted the further yield of 5-epi-jinkoheremol. By using protein engineering, we improved its catalytic efficiency, and combined with the optimization of regulation factors, the highest production of 5-epi-jinkoheremol was achieved. Our work was useful for the larger-scale efficient production of this antifungal sesquiterpene.


Assuntos
Catharanthus , Engenharia Metabólica , Sesquiterpenos , Sesquiterpenos/metabolismo , Catharanthus/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ácido Mevalônico/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Vias Biossintéticas , Biologia Sintética
2.
iScience ; 27(8): 110382, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39108730

RESUMO

Bombinin-BO1 (BO1), a bombinin peptide derived from the skin secretion of Bombina orientalis, exhibits broad-spectrum antimicrobial activity. To date, the anticancer effect of BO1 remains unclear. This study confirmed cytotoxicity of BO1 on hepatocellular carcinoma cells by inducing S-phase cycle block and apoptosis. In addition, BO1 was found to be localized in cytoplasm through endocytosis. The combined results of pull down, mass spectrometry, and co-immunoprecipitation suggested that BO1 induced misfolding of CDK1 and degradation by competitively binding HSP90A with Cdc37. It was verified that overexpression of HSP90A in BO1-treated cells significantly inhibited degradation of CDK1. In vivo, BO1 inhibited tumor without being toxic to individuals. This study reveals the anti-tumor mechanism of BO1 in inducing cell-cycle arrest and apoptosis by interfering with HSP90A-Cdc37-CDK1 system. This is the first study to analyze the mechanism of BO1 regulation of tumor cells, providing theoretical basis for BO1 treatment of hepatocellular carcinoma.

3.
Pharmacol Res ; 207: 107327, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079577

RESUMO

Evidence shows that tropomodulin 1 (TMOD1) is a powerful diagnostic marker in the progression of several cancer types. However, the regulatory mechanism of TMOD1 in tumor progression is still unclear. Here, we showed that TMOD1 was highly expressed in acute myeloid leukemia (AML) specimens, and TMOD1-silencing inhibited cell proliferation by inducing autophagy in AML THP-1 and MOLM-13 cells. Mechanistically, the C-terminal region of TMOD1 directly bound to KPNA2, and TMOD1-overexpression promoted KPNA2 ubiquitylation and reduced KPNA2 levels. In contrast, TMOD1-silencing increased KPNA2 levels and facilitated the nuclear transfer of KPNA2, then subsequently induced autophagy and inhibited cell proliferation by increasing the nucleocytoplasmic transport of p53 and AMPK activation. KPNA2/p53 inhibitors attenuated autophagy induced by silencing TMOD1 in AML cells. Silencing TMOD1 also inhibited tumor growth by elevating KPNA2-mediated autophagy in nude mice bearing MOLM-13 xenografts. Collectively, our data demonstrated that TMOD1 could be a novel therapeutic target for AML treatment.


Assuntos
Autofagia , Proliferação de Células , Leucemia Mieloide Aguda , Camundongos Nus , Tropomodulina , alfa Carioferinas , Humanos , Animais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Tropomodulina/genética , Tropomodulina/metabolismo , Linhagem Celular Tumoral , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos Endogâmicos BALB C , Masculino , Inativação Gênica , Feminino , Células THP-1
4.
Biomed Pharmacother ; 176: 116912, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850667

RESUMO

BACKGROUND: Chronic atrophic gastritis (CAG) is a global digestive system disease and one of the important causes of gastric cancer. The incidence of CAG has been increasing yearly worldwide. PURPOSE: This article reviews the latest research on the common causes and future therapeutic targets of CAG as well as the pharmacological effects of corresponding clinical drugs. We provide a detailed theoretical basis for further research on possible methods for the treatment of CAG and reversal of the CAG process. RESULTS: CAG often develops from chronic gastritis, and its main pathological manifestation is atrophy of the gastric mucosa, which can develop into gastric cancer. The drug treatment of CAG can be divided into agents that regulate gastric acid secretion, eradicate Helicobacter. pylori (H. pylori), protect gastric mucous membrane, or inhibit inflammatory factors according to their mechanism of action. Although there are limited specific drugs for the treatment of CAG, progress is being made in defining the pathogenesis and therapeutic targets of the disease. Growing evidence shows that NF-κB, PI3K/AKT, Wnt/ ß-catenin, MAPK, Toll-like receptors (TLRs), Hedgehog, and VEGF signaling pathways play an important role in the development of CAG.


Assuntos
Gastrite Atrófica , Transdução de Sinais , Humanos , Gastrite Atrófica/tratamento farmacológico , Gastrite Atrófica/microbiologia , Gastrite Atrófica/patologia , Gastrite Atrófica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Doença Crônica , Helicobacter pylori/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia
5.
Phytomedicine ; 131: 155775, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838401

RESUMO

BACKGROUND: The cyclin-dependent kinase 4 (CDK4) interacts with its canonical and non-canonical substrates modulating the cell cycle in tumor cells. However, the potential substrates and the beyond-cell-cycle-regulated functions of CDK4 in colon cancer (CC) are still unknown. Hernandezine (HER) is previously verified to induce G0/G1 phase arrest and autophagic cell death in human cancer cells, which implies that HER might target G0/G1 phase-related proteins, including CDK4. PURPOSE: The present study tried to investigate the glycolytic metabolism and oxidative stress functions of CDK4 in colon cancer. Furthermore, the inhibitory effects and potential binding sites of HER on CDK4, as well as its anti-tumor activity were investigated in CC cells. METHODS: The mass spectrometry assay was performed to identify potential endogenous substrates of CDK4 and the correlation between glycolytic metabolic rate and CDK4 level in COAD patient tissues. Meanwhile, after inhibiting the activity or the expression of CDK4, the binding capacity of CDK4 to PKM2 and NRF2 and the latter two protein distributions in cytoplasm and nucleus were detected in CC cells. In vitro, the regulatory effects of the CDK4-PKM2-NRF2 axis on glycolysis and oxidative stress were performed by ECAR, OCR, and ROS assay. The inhibitory effect of HER on CDK4 activity was explored in CC cells and the potential binding sites were predicted and testified in vitro. Furthermore, tumor growth inhibition of HER by suppressing the CDK4-PKM2-NRF2 axis was also investigated in vitro and in vivo. RESULTS: PKM2 and NRF2 were identified as endogenous substrates of CDK4 and, high-expressed CDK4 was associated with low-level glycolysis in COAD. In vitro, inactivated CDK4 facilitated CDK4-PKM2-NRF2 complex formation which resulted in 1) inhibited PKM2 activity and retarded the glycolytic rate; 2) cytoplasm-detained NRF2 failed to transcript anti-oxidative gene expressions and induced oxidant stress. Additionally, as a CDK4 inhibitor, HER developed triple anti-tumor effects including induced G0/G1 phase arrest, suppressed glycolysis, and disrupted the anti-oxidative capacity of CC cells. CONCLUSION: The results first time revealed that CDK4 modulated glycolytic and anti-oxidative capacity of CC cells via bound to its endogenous substrates, PKM2 and NRF2. Additionally, 140Asp145Asn amino acid sites of CDK4 were potential targets of HER. HER exerts anti-tumor activity by inhibited the activity of CDK4, promoted the CDK4-PKM2-NRF2 complex formation in the CC cells.


Assuntos
Proteínas de Transporte , Neoplasias do Colo , Quinase 4 Dependente de Ciclina , Proteínas de Membrana , Fator 2 Relacionado a NF-E2 , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Quinase 4 Dependente de Ciclina/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Animais , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Linhagem Celular Tumoral , Proteínas de Transporte/metabolismo , Glicólise/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Camundongos Nus , Camundongos Endogâmicos BALB C , Feminino
7.
Phytomedicine ; 127: 155440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452691

RESUMO

BACKGROUND: The high metastasis and mortality rates of head and neck squamous cell carcinoma (HNSCC) urgently require new treatment targets and drugs. A steroidal component of ChanSu, telocinobufagin (TBG), was verified to have anti-cancer effects in various tumors, but its activity and mechanism in anti-HNSCC were still unknown. PURPOSE: This study tried to demonstrate the anti-tumor effect of TBG on HNSCC and verify its potential mechanism. METHODS: The effect of TBG on cell proliferation and metastasis were performed and the TBG changed genes were detected by RNA-seq analysis in HNSCC cells. The GSEA and PPI analysis were used to identify the pathways targeted for TBG-regulated genes. Meanwhile, the mechanism of TBG on anti-proliferative and anti-metastasis were investigated in vitro and in vivo. RESULTS: The in vitro and in vivo experiments confirmed that TBG has favorable anti-tumor effects by induced G2/M phase arrest and suppressed metastasis in HNSCC cells. Further RNA-seq analysis demonstrated the genes regulated by TBG were enriched at the G2/M checkpoint and PLK1 signaling pathway. Then, the bioinformatic analysis of clinical data found that high expressed PLK1 were closely associated with poor overall survival in HNSCC patients. Furthermore, PLK1 directly and indirectly modulated G2/M phase and metastasis (by regulated CTCF) in HNSCC cells, simultaneously. TBG significantly inhibited the protein levels of PLK1 in both phosphorylated and non-phosphorylated forms and then, in one way, inactivated PLK1 failed to activate G2/M phase-related proteins (including CDK1, CDC25c, and cyclin B1). In another way, be inhibited PLK1 unable promote the nuclear translocation of CTCF and thus suppressed HNSC cell metastasis. In contrast, the anti-proliferative and anti-metastasis effects of TBG on HNSCC cell were vanished when cells high-expressed PLK1. CONCLUSION: The present study verified that PLK1 mediated TBG induced anti-tumor effect by modulated G2/M phase and metastasis in HNSCC cells.


Assuntos
Bufanolídeos , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Linhagem Celular Tumoral
8.
Appl Microbiol Biotechnol ; 108(1): 226, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381229

RESUMO

Terpenoids are a class of structurally complex, naturally occurring compounds found predominantly in plant, animal, and microorganism secondary metabolites. Classical terpenoids typically have carbon atoms in multiples of five and follow well-defined carbon skeletons, whereas noncanonical terpenoids deviate from these patterns. These noncanonical terpenoids often result from the methyltransferase-catalyzed methylation modification of substrate units, leading to irregular carbon skeletons. In this comprehensive review, various activities and applications of these noncanonical terpenes have been summarized. Importantly, the review delves into the biosynthetic pathways of noncanonical terpenes, including those with C6, C7, C11, C12, and C16 carbon skeletons, in bacteria and fungi host. It also covers noncanonical triterpenes synthesized from non-squalene substrates and nortriterpenes in Ganoderma lucidum, providing detailed examples to elucidate the intricate biosynthetic processes involved. Finally, the review outlines the potential future applications of noncanonical terpenoids. In conclusion, the insights gathered from this review provide a reference for understanding the biosynthesis of these noncanonical terpenes and pave the way for the discovery of additional unique and novel noncanonical terpenes. KEY POINTS: •The activities and applications of noncanonical terpenoids are introduced. •The noncanonical terpenoids with irregular carbon skeletons are presented. •The microbial biosynthesis of noncanonical terpenoids is summarized.


Assuntos
Terpenos , Triterpenos , Animais , Carbono , Metiltransferases , Processamento de Proteína Pós-Traducional
9.
Int J Biol Macromol ; 259(Pt 2): 129352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218293

RESUMO

Converting M2 macrophages into an M1 phenotype in the tumor microenvironment, provides a new direction for tumor treatment. Here, we further report CVPW-1, a new polysaccharide of 1.03 × 106 Da that was isolated from Coriolus versicolor. Its monosaccharide was composed of mannose, glucose, and galactose at a ratio of 1.00:8.73:1.68. The backbone of CVPW-1 was composed of (1 â†’ 3)-linked α-D-Glcp residues and (1 â†’ 3,6)-linked α-D-Glcp residues that branched at O-6. The branch consisted of (1 â†’ 6)-linked α-D-Glcp residues and (1 â†’ 4)-linked α-D-Glap, and some branches were terminated with (1→)-linked ß-D-Manp residues according to the results of HPLC, FT-IR, GC-MS, 1D and 2D NMR. Meanwhile, CVPW-1 could polarize M2 macrophages to M1 phenotypein vitro by binding to TLR4 and inducing the activation of Akt, JNK and NF-κB. This process involved reversing the functional inhibition of CD8+ T lymphocytes by inhibiting the expression of TREM2 in M2 macrophages. The in vivo experiments showed that oral administration of CVPW-1 could inhibit the growth of tumor in mice and polarize TAMs to M1 phenotype. Thus, the novel polysaccharide CVPW-1 from Coriolus versicolor might activate a variety of immune cells and then play an anti-tumor role. These results demonstrated that CVPW-1 could be developed as a potential immuno-oncology treatment reagent.


Assuntos
Neoplasias , Polyporaceae , Microambiente Tumoral , Animais , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/farmacologia , Polissacarídeos/química , Macrófagos , Fenótipo , Neoplasias/tratamento farmacológico
10.
Biol Pharm Bull ; 47(2): 486-498, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38199251

RESUMO

Resina Draconis is a traditional Chinese medicine, with the in-depth research, its medicinal value in anti-tumor has been revealed. Loureirin A is extracted from Resina Draconis, however, research on the anti-tumor efficacy of Loureirin A is rare. Herein, we investigated the function of Loureirin A in melanoma. Our research demonstrated that Loureirin A inhibited the proliferation of and caused G0/G1 cell cycle arrest in melanoma cells in a concentration-dependent manner. Further study showed that the melanin content and tyrosinase activity was enhanced after Loureirin A treatment, demonstrated that Loureirin A promoted melanoma cell differentiation, which was accompanied with the reduce of WNT signaling pathway. Meanwhile, we found that Loureirin A suppressed the migration and invasion of melanoma cells through the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Taken together, this study demonstrated for the first time the anti-tumor effects of Loureirin A in melanoma cells, which provided a novel therapeutic strategy against melanoma.


Assuntos
Chalconas , Melanoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/metabolismo , Diferenciação Celular , Via de Sinalização Wnt , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Movimento Celular , Linhagem Celular Tumoral
11.
Biomed Pharmacother ; 168: 115809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907043

RESUMO

The traditional Chinese medicine (TCM) Rehmanniae Radix (RR) refers to the fresh or dried root tuber of the plant Rehmannia glutinosa Libosch of the family Scrophulariaceae. As a traditional Chinese herbal medicine (CHM), it possesses multiple effects, including analgesia, sedation, anti-inflammation, antioxidation, anti-tumor, immunomodulation, cardiovascular and cerebrovascular regulation, and nerve damage repair, and it has been widely used in clinical practice. In recent years, scientists have extensively studied the active components and pharmacological effects of RR. Active ingredients mainly include iridoid glycosides (such as catalpol and aucuboside), phenylpropanoid glycosides (such as acteoside), other saccharides, and unsaturated fatty acids. In addition, the Chinese patent medicine (CPM) and Chinese decoction related to RR have also become major research subjects for TCM practitioners; one example is the Bolus of Six Drugs, which includes Rehmannia, Lily Bulb and Rehmannia Decoction, and Siwu Decoction. This article reviews recent literature on RR; summarizes the studies on its chemical constituents, pharmacological effects, and clinical applications; and analyzes the progress and limitations of current investigations to provide reference for further exploration and development of RR.


Assuntos
Medicamentos de Ervas Chinesas , Rehmannia , Humanos , Medicina Tradicional Chinesa , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Glicosídeos Iridoides
12.
PLoS One ; 18(9): e0290968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656697

RESUMO

In this work, we present a network-based technique for chest X-ray image classification to help the diagnosis and prognosis of patients with COVID-19. From visual inspection, we perceive that healthy and COVID-19 chest radiographic images present different levels of geometric complexity. Therefore, we apply fractal dimension and quadtree as feature extractors to characterize such differences. Moreover, real-world datasets often present complex patterns, which are hardly handled by only the physical features of the data (such as similarity, distance, or distribution). This issue is addressed by complex networks, which are suitable tools for characterizing data patterns and capturing spatial, topological, and functional relationships in data. Specifically, we propose a new approach combining complexity measures and complex networks to provide a modified high-level classification technique to be applied to COVID-19 chest radiographic image classification. The computational results on the Kaggle COVID-19 Radiography Database show that the proposed method can obtain high classification accuracy on X-ray images, being competitive with state-of-the-art classification techniques. Lastly, a set of network measures is evaluated according to their potential in distinguishing the network classes, which resulted in the choice of communicability measure. We expect that the present work will make significant contributions to machine learning at the semantic level and to combat COVID-19.


Assuntos
Teste para COVID-19 , COVID-19 , Humanos , Bases de Dados Factuais , Fractais , Nível de Saúde
13.
Oncol Lett ; 26(2): 327, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37415631

RESUMO

Gastric cancer is one of the most lethal cancers worldwide. Research has focused on exploring natural medicines to improve the systematic chemotherapy for gastric cancer. Luteolin, a natural flavonoid, possesses anticancer activities. Nevertheless, the mechanism of the anticancer effects of luteolin is still not clear. The present study aimed to verify the inhibitory effect of luteolin on gastric cancer HGC-27, MFC and MKN-45 cells and to explore the underlying mechanism. A Cell Counting Kit-8 cell viability assay, flow cytometry, western blot, an ATP content assay and an enzyme activity testing assay were used. Luteolin inhibited the proliferation of gastric cancer HGC-27, MFC and MKN-45 cells. Further, it impaired mitochondrial integrity and function by destroying the mitochondrial membrane potential, downregulating the activities of mitochondrial electron transport chain complexes (mainly complexes I, III and V), and unbalancing the expression of B cell lymphoma-2 family member proteins, eventually leading to apoptosis of gastric cancer HGC-27, MFC and MKN-45 cells. The intrinsic apoptosis pathway was involved in luteolin's anti-gastric cancer effects. Furthermore, mitochondria were the main target in luteolin-induced gastric cancer apoptosis. The present study may provide a theoretical basis for the research on the effect of luteolin on the mitochondrial metabolism in cancer cells, and pave the way for its practical application in the future.

14.
J Adv Res ; 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37479180

RESUMO

INTRODUCTION: Although colon (COAD) and rectal adenocarcinoma (READ) combined to refer to colorectal cancer (CRC), substantial clinical evidence urged that CRC should be treated as two different cancers due to compared with READ, COAD showed higher morbidity and worse 5-year survival. OBJECTIVES: This study has tried to screen for the crucial gene that caused the worse prognosis and investigate its mechanism for mediating tumor growth and metastases in COAD. Meanwhile, the potential anti-COAD compound implicated in this mechanism was identified and testified from 1,855 food-borne chemical kits. This study aims to bring a new perspective to the development of new anti-COAD drugs and personalized medicine for patients with COAD. METHODS AND RESULTS: The survival-related hub genes in COAD and READ were screened out from The Cancer Genome Atlas (TCGA) database and the results showed that HIGD1A, lower expressed in COAD than in READ, was associated with poor prognosis in COAD patients, but not in READ. Over-expressed HIGD1A suppressed CRC cell proliferation, invasion, and migration in vitro and in vivo. Meanwhile, the different expressed microRNA profiles between COAD and READ showed that miR-501-3p was highly expressed in COAD and inhibited HIGD1A expression by targeting 3'UTR of HIGD1A. MiR-501-3p mimics promoted cell proliferation and metastasis in CRC cells. In addition, Procyanidin C1 (PCC1), a kind of natural polyphenol has been verified as a potential miR-501-3p inhibitor. In vitro and in vivo, PCC1 promoted HIGD1A expression by suppressing miR-501-3p and resulted in inhibited tumor growth and metastasis. CONCLUSION: The present study verified that miR-501-3p/HIGD1A axis mediated tumor growth and metastasis in COAD. PCC1, a flavonoid that riched in food exerts anti-COAD effects by inhibiting miR-501-3p and results in the latter losing the ability to suppress HIGD1A expression. Subsequently, unfettered HIGD1A inhibited tumor growth and metastasis in COAD.

15.
Appl Microbiol Biotechnol ; 107(11): 3391-3404, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126085

RESUMO

Rare ginsenosides are the deglycosylated secondary metabolic derivatives of major ginsenosides, and they are more readily absorbed into the bloodstream and function as active substances. The traditional preparation methods hindered the potential application of these effective components. The continuous elucidation of ginsenoside biosynthesis pathways has rendered the production of rare ginsenosides using synthetic biology techniques effective for their large-scale production. Previously, only the progress in the biosynthesis and biotechnological production of major ginsenosides was highlighted. In this review, we summarized the recent advances in the identification of key enzymes involved in the biosynthetic pathways of rare ginsenosides, especially the glycosyltransferases (GTs). Then the construction of microbial chassis for the production of rare ginsenosides, mainly in Saccharomyces cerevisiae, was presented. In the future, discovery of more GTs and improving their catalytic efficiencies are essential for the metabolic engineering of rare ginsenosides. This review will give more clues and be helpful for the characterization of the biosynthesis and metabolic engineering of rare ginsenosides. KEY POINTS: • The key enzymes involved in the biosynthetic pathways of rare ginsenosides are summarized. • The recent progress in metabolic engineering of rare ginsenosides is presented. • The discovery of glycosyltransferases is essential for the microbial production of rare ginsenosides in the future.


Assuntos
Ginsenosídeos , Panax , Engenharia Metabólica , Ginsenosídeos/metabolismo , Panax/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo
16.
Microb Cell Fact ; 22(1): 76, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085866

RESUMO

Central carbon metabolism (CCM), including glycolysis, tricarboxylic acid cycle and the pentose phosphate pathway, is the most fundamental metabolic process in the activities of living organisms that maintains normal cellular growth. CCM has been widely used in microbial metabolic engineering in recent years due to its unique regulatory role in cellular metabolism. Using yeast and Escherichia coli as the representative organisms, we summarized the metabolic engineering strategies on the optimization of CCM in eukaryotic and prokaryotic microbial chassis, such as the introduction of heterologous CCM metabolic pathways and the optimization of key enzymes or regulatory factors, to lay the groundwork for the future use of CCM optimization in metabolic engineering. Furthermore, the bottlenecks in the application of CCM optimization in metabolic engineering and future application prospects are summarized.


Assuntos
Carbono , Engenharia Metabólica , Carbono/metabolismo , Redes e Vias Metabólicas , Via de Pentose Fosfato , Ciclo do Ácido Cítrico , Escherichia coli/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
J Nat Prod ; 86(4): 966-978, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37043698

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor with a high rate of recurrence and a poor prognosis. Here, we investigated the effect and the potential antitumor mechanism of Gamabufotalin (CS-6) against HCC. Our results show that CS-6 strikingly reduced cell viability, inhibited colony formation, and promoted apoptosis in Hep3B and Huh7 cells. In vivo, CS-6 inhibited HCC xenograft tumor growth with no toxicity to normal tissues. Mechanistically, we found that CS-6 could induce cytoprotective autophagy through the mTOR-ULK1 signaling pathway through downregulation of p62 and upregulation of LC3 II/LC3 I. Meanwhile, CS-6 activated caspase-3 and PARP mediated apoptosis, and the caspase inhibitor Z-VAD-FMK blocked the CS-6-induced cell death in HCC cells. Moreover, autophagy and apoptosis were found to have antagonistic effects in Hep3B and Huh7 cells. Both the autophagy inhibitor chloroquine (CQ) and the mTOR activator MHY1485 blocked autophagy and further enhanced CS-6-induced apoptosis. Taken together, we demonstrated for the first time that CS-6 promotes apoptosis and cytoprotective autophagy through the mTOR signaling pathway in HCC, which proposes a novel strategy for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Apoptose , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Linhagem Celular Tumoral , Proliferação de Células
18.
Front Pharmacol ; 14: 1095786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895945

RESUMO

Cancer is a major threat to human health, with high mortality and a low cure rate, continuously challenging public health worldwide. Extensive clinical application of traditional Chinese medicine (TCM) for patients with poor outcomes of radiotherapy and chemotherapy provides a new direction in anticancer therapy. Anticancer mechanisms of the active ingredients in TCM have also been extensively studied in the medical field. As a type of TCM against cancer, Rhizoma Paridis (Chinese name: Chonglou) has important antitumor effects in clinical application. The main active ingredients of Rhizoma Paridis (e.g., total saponins, polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII) have shown strong antitumor activities in various cancers, such as breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer. Rhizoma Paridis also has low concentrations of certain other active ingredients with antitumor effects, such as saponins polyphyllin E, polyphyllin H, Paris polyphylla-22, gracillin, and formosanin-C. Many researchers have studied the anticancer mechanism of Rhizoma Paridis and its active ingredients. This review article describes research progress regarding the molecular mechanism and antitumor effects of the active ingredients in Rhizoma Paridis, suggesting that various active ingredients in Rhizoma Paridis may be potentially therapeutic against cancer.

19.
J Ethnopharmacol ; 303: 116031, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503032

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shen-Qi-Jiang-Tang granule (SQJTG), a classic traditional Chinese medicine (TCM) prescription, has been widely used in clinical for diabetes, especially type Ⅱ diabetes. Previous anti-diabetic studies stumbled across that SQJTG has a potential kidney protective effect on diabetic nephropathy (DN). However, the protective mechanism of SQJTG on DN still needs to be explored. AIM OF THE STUDY: The purpose of the present study was to explore the therapeutic effect of SQJTG on DN through both bioinformatics analysis and in vivo experiments. METHODS AND MATERIALS: The TCMIP database was used for screening potential compounds and targets of SQJTG, and the GeneCards, OMIM, DrugBank, and TTD databases were used for collecting DN-related genes. Then protein-protein interaction analysis for the common targets of SQJTG and DN was performed by the STRING database. Meanwhile, KEGG and GO were carried out using the Metascape and DAVID databases. In vivo experiments, to testify the potential kidney protective effects of SQJTG, STZ-induced DN mice with different dosages of SQJTG treatment were collected and the renal tissues were detected by H&E, PAS, Masson and TUNEL staining. Immunohistochemistry and immunoblotting were used to assess the proteins' expressions. Flow cytometry and ELISA assay were used to detect the levels of pro-inflammatory cytokines. RESULTS: Among the 338 compounds ascertained by SQJTG, there were 789 related targets as well. Moreover, 1,221 DN-related targets were predicted and 20 core targets were screened by the PPI analyses. According to GO and KEGG pathway analysis, SQJTG may affect DN via the TNF pathway. For the in vivo experiments, renal histomorphological examinations demonstrated that SQJTG treatment significantly ameliorated STZ-induced kidney damage and had a dosage dependence. Meanwhile, mice with DN were found to have dramatic increases in IL-1, TNF-α, IL-6, and IL-12, but markedly decreased after administration of SQJTG. In addition, the protein levels of TNF signaling molecules, like p-P65, p-JNK, and p-p38, showed significantly elevated in kidney tissues of DN mice and attenuated after SQJTG treatment. CONCLUSIONS: SQJTG exerts a kidney protective effect in DN mice via modulating TNF signaling pathways, and it has promising applications for the treatment of DN.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/patologia , Diabetes Mellitus Experimental/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
20.
Pharmacol Res ; 187: 106584, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462326

RESUMO

Prostate cancer (PCa) is associated with a high incidence and metastasis rate globally, resulting in an unsatisfactory prognosis and a huge economic burden due to the current deficient of therapeutic strategies. As the most abundant component of Cortex Mori, Sanggenon C (SC) is well known to possess bioactivities in tumors, but its mechanism is poorly understood. Consequently, we attempted to investigate whether SC could modulate circular RNA(s) levels and hence anti-PCa development. We found that SC dramatically promoted cell apoptosis and induced G0/G1 phase arrest in PCa cell lines via the circHMGCS1-miR-205-5p-ErBB3 axis. In brief, circHMGCS1 is highly expressed in PCa and is positively correlated with the degree of malignancy. Over-expression of circHMGCS1 is not only associated with the proliferation of PCa cells but also blocks SC-induced pro-apoptotic effects. As a verified sponge of circHMGCS1, miR-205-5p is down-regulated in PCa tumors, which negatively regulates PCa cell proliferation by modulating ErBB3 expression. After miR-205-5p mimics or inhibitors were used to transfect PCa cells, the effects of circHMGCS1 OE and SC on PCa cells were completely diminished. Similar to miR-205-5p inhibitors, siErBB3 could oppose SC-triggered pro-apoptotic effects on PCa cells. All these results were confirmed in vivo. Together, SC exerts its anti-tumor effects on PCa by inhibiting circHMGCS1 expression and results in the latter losing the ability to sponge miR-205-5p. Subsequently, unfettered miR-205-5p could mostly down-regulate ErBB3 expression by binding to the 5'UTR of ErBB3 mRNA, which eventually resulted in PCa cell cycle arrest and pro-apoptosis.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Movimento Celular , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA