Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760646

RESUMO

Resatorvid (TAK-242), a specific inhibitor of Toll-like receptor-4 (TLR4), has attracted attention for its anti-inflammatory properties. Despite this, few studies have evaluated its effects on ulcerative colitis (UC). This study aimed to investigate the effects of TAK-242 on macrophage polarization and T helper cell balance and the mechanism by which it alleviates UC. Our findings indicated that TLR4 expression was elevated in patients with UC, a mouse model of UC, and HT29 cells undergoing an inflammatory response. TAK­242 treatment reduced apoptosis in TNF-α and LPS-stimulated HT29 cells and alleviated symptoms of dextran sulfate sodium (DSS)­induced colitis in vivo. TAK­242 downregulated TLR4 expression and decreased the secretion of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß while enhancing IL-10 production. TAK-242 also reduced M1 macrophage polarization and diminished Th1 and Th17 cell infiltration while increasing Th2 cell infiltration and M2 macrophage polarization both in vitro and in vivo. Mechanistically, TAK-242 inhibited the JAK2/STAT3 signaling pathway, an important regulator of macrophage polarization and T helper cell balance. Furthermore, the in vivo and in vitro effects of TAK-242 were partially negated by the administration of the JAK2/STAT3 antagonist AG490, suggesting that TAK-242 inhibits the JAK2/STAT3 pathway to exert its biological activities. Taken together, this study underscores TAK-242 as a promising anti-UC agent, functioning by modulating macrophage polarization and T helper cell balance via the TLR4/JAK2/STAT3 signaling pathway.

2.
Langmuir ; 39(13): 4766-4776, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36939641

RESUMO

Chemotherapy is the main method of treating malignant tumors in clinical treatment. However, the commonly used chemotherapeutic drugs have the disadvantages of high biological toxicity, poor water solubility, low targeting ability, and high side effects. Zwitterionic micelles assembled by amphiphilic dendrimers modified with zwitterionic groups and targeting ligand should largely overcome these shortcomings. Herein, the zwitterionic group and targeting peptide c(RGDfC) were modified on the surface of generation 2 poly(propylene imine) dendrimers (G2 PPI), which was conjugated with hydrophobic N-(2-mercaptoethyl) oleamide to form amphiphilic dendrimers (PPIMYRC). PPIMYRC self-assembled into micelles with doxorubicin (DOX) loaded in the interior of micelles to prepare DOX-loaded micelles (PPIMYRC-DOX micelles). The PPIMYRC-DOX micelles had great stability in fibrinogen and pH-responsive drug release. Furthermore, PPIMYRC-DOX micelles had higher cellular uptake rates than free DOX, resulting in higher cytotoxicity of PPIMYRC-DOX micelles than that of free DOX. More importantly, PPIMYRC-DOX micelles inhibited tumors much better than free DOX. The tumor inhibition rate of PPIMYRC-DOX micelles was as high as 93%. Taken together, PPIMYRC-DOX micelles were assembled by amphiphilic dendrimers with the zwitterionic and targeting groups, which enhanced the therapeutic effect of DOX and reduced its side effects. The prepared targeting nanodrug has great potential for further application in antitumor therapy.


Assuntos
Dendrímeros , Neoplasias , Humanos , Dendrímeros/química , Doxorrubicina , Portadores de Fármacos/toxicidade , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Micelas , Neoplasias/tratamento farmacológico
3.
Chemistry ; 29(12): e202203180, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36378121

RESUMO

Electrochemical production of hydrogen peroxide (H2 O2 ) via two-electron oxygen reduction reaction (ORR) process is emerging as a promising alternative method to the conventional anthraquinone process. To realize high-efficiency H2 O2 electrosynthesis, robust and low cost electrocatalysts have been intensively pursued, among which Co-based catalysts attract particular research interests due to the earth-abundance and high selectivity. Here, we provide a comprehensive review on the advancement of Co-based electrocatalyst for H2 O2 electroproduction. The fundamental chemistry of 2-electron ORR is discussed firstly for guiding the rational design of electrocatalysts. Subsequently, the development of Co-based electrocatalysts involving nanoparticles, compounds and single atom catalysts is summarized with the focus on active site identification, structure regulation and mechanism understanding. Moreover, the current challenges and future directions of the Co-based electrocatalysts are briefly summarized in this review.

4.
Analyst ; 145(15): 5174-5179, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32613972

RESUMO

In this work, a method for quantifying the activity of formamidopyrimidine DNA glucosylase (Fpg) was designed based on phosphate group (P)-modulated multi-enzyme catalysis and fluorescent copper nanoclusters (CuNCs). By eliminating 8-oxoguanine from double-stranded DNA, Fpg generates a nick with P at both 3' and 5' termini. Subsequently, part of the DNA is digested by 5'P-activated lambda exonuclease (λ Exo), and the generated 3'P disables exonuclease I (Exo I), resulting in the generation of single-stranded DNA containing poly(thymine) (poly(T)). Using poly(T) as templates, CuNCs were prepared to emit intense fluorescence as the readout of this method. However, in the absence of Fpg, the originally modified 5'P triggers the digestion of λ Exo. In this case, fluorescence emission is not obtained because CuNCs cannot be formed without DNA templates. Therefore, the catalysis of λ Exo and Exo I can be tuned by 5'P and 3'P, which can be further used to determine the activity of Fpg. The fluorescent Fpg biosensor works in a "signal-on" manner with the feature of "zero" background noise, and thus shows desirable analytical features and good performance. Besides, Fpg in serum samples and cell lysate could be accurately detected with the biosensor, indicating the great value of the proposed system in practical and clinical analysis.


Assuntos
Técnicas Biossensoriais , Cobre , Catálise , DNA , Fosfatos
5.
J Sep Sci ; 40(20): 3969-3975, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28796417

RESUMO

Metal-organic frameworks-5 (MOF-5) was explored as a template to prepare porous carbon due to its high surface area, large pore volume, and permanent nanoscale porosity. Magnetic porous carbon, Co@MOF-5-C, was fabricated by the one-step direct carbonization of Co-doped MOF-5. After carbonization, the magnetic cobalt nanoparticles are well dispersed in the porous carbon matrix, and Co@MOF-5-C displays strong magnetism (with the saturation magnetization intensity of 70.17emu/g), high-specific surface area, and large pore volume. To evaluate its extraction performance, the Co@MOF-5-C was applied as an adsorbent for the magnetic solid-phase extraction of endocrine disrupting chemicals, followed by their analysis with high-performance liquid chromatography. The developed method exhibits a good linear response in the range of 0.5-100 ng/mL for pond water and 1.0-100 ng/mL for juice samples. The limits of detection (S/N = 3) for the analytes were in the range of 0.1-0.2 ng/mL.


Assuntos
Carbono , Disruptores Endócrinos/isolamento & purificação , Estruturas Metalorgânicas , Extração em Fase Sólida , Água Doce/análise , Sucos de Frutas e Vegetais/análise , Magnetismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA