Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474276

RESUMO

Cymbidium sinense, a type of orchid plant, is more drought-resistant and ornamental than other terrestrial orchids. Research has shown that many members of the NUCLEAR FACTOR Y (NF-Y) transcription factor family are responsive to plant growth, development, and abiotic stress. However, the mechanism of the NF-Y gene family's response to abiotic stress in orchids has not yet been reported. In this study, phylogenetic analysis allowed for 27 CsNF-Y genes to be identified (5 CsNF-YAs, 9 CsNF-YBs, and 13 CsNF-YC subunits), and the CsNF-Ys were homologous to those in Arabidopsis and Oryza. Protein structure analysis revealed that different subfamilies contained different motifs, but all of them contained Motif 2. Secondary and tertiary protein structure analysis indicated that the CsNF-YB and CsNF-YC subfamilies had a high content of alpha helix structures. Cis-element analysis showed that elements related to drought stress were mainly concentrated in the CsNF-YB and CsNF-YC subfamilies, with CsNF-YB3 and CsNF-YC12 having the highest content. The results of a transcriptome analysis showed that there was a trend of downregulation of almost all CsNF-Ys in leaves under drought stress, while in roots, most members of the CsNF-YB subfamily showed a trend of upregulation. Additionally, seven genes were selected for real-time reverse transcription quantitative PCR (qRT-PCR) experiments. The results were generally consistent with those of the transcriptome analysis. The regulatory roles of CsNF-YB 1, 2, and 4 were particularly evident in the roots. The findings of our study may make a great contribution to the understanding of the role of CsNF-Ys in stress-related metabolic processes.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Secas , Filogenia , Genoma de Planta , Fator de Ligação a CCAAT/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
2.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255880

RESUMO

Auxin Response Factors (ARFs) mediate auxin signaling and govern diverse biological processes. However, a comprehensive analysis of the ARF gene family and identification of their key regulatory functions have not been conducted in Melastoma dodecandrum, leading to a weak understanding of further use and development for this functional shrub. In this study, we successfully identified a total of 27 members of the ARF gene family in M. dodecandrum and classified them into Class I-III. Class II-III showed more significant gene duplication than Class I, especially for MedARF16s. According to the prediction of cis-regulatory elements, the AP2/ERF, BHLH, and bZIP transcription factor families may serve as regulatory factors controlling the transcriptional pre-initiation expression of MedARF. Analysis of miRNA editing sites reveals that miR160 may play a regulatory role in the post-transcriptional expression of MeARF. Expression profiles revealed that more than half of the MedARFs exhibited high expression levels in the stem compared to other organs. While there are some specific genes expressed only in flowers, it is noteworthy that MedARF16s, MedARF7A, and MedARF9B, which are highly expressed in stems, also demonstrate high expressions in other organs of M. dodecandrum. Further hormone treatment experiments revealed that these MedARFs were sensitive to auxin changes, with MedARF6C and MedARF7A showing significant and rapid changes in expression upon increasing exogenous auxin. In brief, our findings suggest a crucial role in regulating plant growth and development in M. dodecandrum by responding to changes in auxin. These results can provide a theoretical basis for future molecular breeding in Myrtaceae.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Melastomataceae , Embaralhamento de DNA , Flores , Duplicação Gênica , Ácidos Indolacéticos/farmacologia
3.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256078

RESUMO

Heat shock factors (HSFs) are the key regulators of heat stress responses and play pivotal roles in tissue development and the temperature-induced regulation of secondary metabolites. In order to elucidate the roles of HSFs in Cymbidium ensifolium, we conducted a genome-wide identification of CeHSF genes and predicted their functions based on their structural features and splicing patterns. Our results revealed 22 HSF family members, with each gene containing more than one intron. According to phylogenetic analysis, 59.1% of HSFs were grouped into the A subfamily, while subfamily HSFC contained only two HSFs. And the HSF gene families were differentiated evolutionarily between plant species. Two tandem repeats were found on Chr02, and two segmental duplication pairs were observed on Chr12, Chr17, and Chr19; this provided evidence for whole-genome duplication (WGD) events in C. ensifolium. The core region of the promoter in most CeHSF genes contained cis-acting elements such as AP2/ERF and bHLH, which were associated with plant growth, development, and stress responses. Except for CeHSF11, 14, and 19, each of the remaining CeHSFs contained at least one miRNA binding site. This included binding sites for miR156, miR393, and miR319, which were responsive to temperature and other stresses. The HSF gene family exhibited significant tissue specificity in both vegetative and floral organs of C. ensifolium. CeHSF13 and CeHSF15 showed relatively significant expression in flowers compared to other genes. During flower development, CeHSF15 exhibited markedly elevated expression in the early stages of flower opening, implicating critical regulatory functions in organ development and floral scent-related regulations. During the poikilothermic treatment, CeHSF14 was upregulated over 200-fold after 6 h of heat treatment. CeHSF13 and CeHSF14 showed the highest expression at 6 h of low temperature, while the expression of CeHSF15 and CeHSF21 continuously decreased at a low temperature. The expression patterns of CeHSFs further confirmed their role in responding to temperature stress. Our study may help reveal the important roles of HSFs in plant development and metabolic regulation and show insight for the further molecular design breeding of C. ensifolium.


Assuntos
Temperatura Baixa , Resposta ao Choque Térmico , Temperatura , Filogenia , Resposta ao Choque Térmico/genética , Sítios de Ligação
4.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139178

RESUMO

Though conserved in higher plants, the WOX transcription factors play crucial roles in plant growth and development of Melastoma dodecandrum Lour., which shows pioneer position in land ecosystem formation and produces nutritional fruits. Identifying the WOX family genes in M. dodecandrum is imperative for elucidating its growth and development mechanisms. However, the WOX genes in M. dodecandrum have not yet been characterized. In this study, by identification 22 WOX genes in M. dodecandrum based on current genome data, we classified family genes into three clades and nine types with homeodomains. We highlighted gene duplications of MedWOX4, which offered evidences of whole-genome duplication events. Promoter analysis illustrated that cis-regulatory elements related to light and stress responses and plant growth were enriched. Expression pattern and RT-qPCR results demonstrated that the majority of WOX genes exhibited expression in the stem. MedWOX13s displayed highest expression across various tissues. MedWOX4s displayed a specific expression in the stem. Collectively, our study provided foundations for elucidating WOX gene functions and further molecular design breeding in M. dodecandrum.


Assuntos
Ecossistema , Família Multigênica , Duplicação Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003550

RESUMO

AP2/ERF transcription factors play crucial roles in various biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, limited research has been conducted on the AP2/ERF genes of Melastoma dodecandrum for breeding of this potential fruit crop. Leveraging the recently published whole genome sequence, we conducted a comprehensive assessment of this superfamily and explored the expression patterns of AP2/ERF genes at a genome-wide level. A significant number of genes, totaling 218, were discovered to possess the AP2 domain sequence and displayed notable structural variations among five subfamilies. An uneven distribution of these genes was observed on 12 pseudochromosomes as the result of gene expansion facilitated by segmental duplications. Analysis of cis-acting elements within promoter sites and 87.6% miRNA splicing genes predicted their involvement in multiple hormone responses and abiotic stresses through transcriptional and post-transcriptional regulations. Transcriptome analysis combined with qRT-PCR results indicated that certain candidate genes are involved in tissue formation and the response to developmental changes induced by IAA hormones. Overall, our study provides valuable insights into the evolution of ERF genes in angiosperms and lays a solid foundation for future breeding investigations aimed at improving fruit quality and enhancing adaptation to barren land environments.


Assuntos
Melhoramento Vegetal , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Família Multigênica , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Front Plant Sci ; 13: 1023628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561463

RESUMO

Prunus mume (Rosaceae, Prunoideae) serves as an excellent ornamental woody plant with a large-temperature-range cultivation scope. Its flower buds require a certain low temperature to achieve flowering circulation. Thus, it is important to delve into the processes of flower bud differentiation and dormancy, which affected its continuous flowering. These processes are generally considered as regulation by the MADS-box homologs, SHORT VEGETATIVE PHASE (SVP), and DORMANCY-ASSOCIATED MADS-BOX (DAM). However, a precise model on their interdependence and specific function, when acting as a complex in the flower development of P. mume, is needed. Therefore, this study highlighted the integral roles of PmDAMs and PmSVPs in flower organ development and dormancy cycle. The segregation of PmDAMs and PmSVPs in a different cluster suggested distinct functions and neofunctionalization. The expression pattern and yeast two-hybrid assays jointly revealed that eight genes were involved in the floral organ development stages, with PmDAM1 and PmDAM5 specifically related to prolificated flower formation. PmSVP1-2 mingled in the protein complex in bud dormancy stages with PmDAMs. Finally, we proposed the hypothesis that PmSVP1 and PmSVP2 could combine with PmDAM1 to have an effect on flower organogenesis and interact with PmDAM5 and PmDAM6 to regulate flower bud dormancy. These findings could help expand the current molecular mechanism based on MADS-box genes during flower bud development and dormancy.

7.
Mitochondrial DNA B Resour ; 7(1): 257-258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35087948

RESUMO

Phalaenopsis stobartiana Reichenbach f. 1877 is mainly distributed in Yunnan province of China and has a high ornamental and breeding value. Here, we reported the chloroplast genome of P. stobartiana. The length of the chloroplast genome was 145,900 bp, encoding 120 genes. The average GC content was 36.8%. Phylogenetic analysis revealed that P. stobartiana and P. wilsonii are closely related. The chloroplast genome could be used for further phylogenetic research, and provide molecular data for future genetic protection and breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA