Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Arch Esp Urol ; 77(4): 353-358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38840277

RESUMO

BACKGROUND: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a common chronic disease, and its aetiology and pathogenesis remain unclear. This study aimed to identify potential urine and serum biomarkers in patients with IC/BPS to further understand the pathogenesis and diagnosis of the disease. METHODS: Patients with IC/BPS diagnosed and treated in the First Hospital of Hebei Medical University from 1 July 2021 to 30 July 2023 were selected. The urine and serum biomarkers of 50 patients with IC/BPS were investigated and compared with the urine and serum samples of 50 healthy controls. IBM SPSS Statistics 26.0 was used for statistical analysis of the recorded data by using chi-square test, T-test and logistic regression analysis. RESULTS: Overall, 50 patients with IC/BPS (mean age, 54.20 ± 8.15 years) were included in the study. Those with history of urinary diseases, anxiety or depression were susceptible to IC/BPS. Levels of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), nerve growth factor, and prostaglandin E2 (PGE2) in urine, as well as IL-8, TNF-α, and PGE2 in serum, were found to significantly increase in patients with interstitial cystitis/bladder pain syndrome (IC/BPS). These differences were statistically significant (p < 0.05). Multifactor analysis showed that anxiety, depression, IL-6, IL-8, TNF-α and PEG2 are risk factors for patients with IC/BPS. CONCLUSIONS: Multiple biomarkers were identified in the urine and serum of patients with IC/BPS, suggesting a potential close relationship to the pathogenesis of IC/BPS.


Assuntos
Biomarcadores , Cistite Intersticial , Humanos , Cistite Intersticial/sangue , Cistite Intersticial/urina , Biomarcadores/sangue , Biomarcadores/urina , Pessoa de Meia-Idade , Feminino , Masculino , Adulto , Fator de Necrose Tumoral alfa/sangue , Interleucina-6/sangue , Interleucina-6/urina
2.
Arch Esp Urol ; 77(3): 292-302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38715171

RESUMO

BACKGROUND: Renal cell carcinoma (RCC), a common and highly invasive malignant tumour, presents clinical challenges due to its propensity for easy metastasis. Inferior vena cava tumour thrombus is a common RCC complication significantly impacting patient prognosis. This study investigates C-X-C chemokine receptor type 2 (CXCR2)/Snail-1-induced epithelial-mesenchymal transition (EMT) in RCC with inferior vena cava tumour thrombus. METHODS: Tissues from 51 RCC patients were analysed for CXCR2 and Snail-1 Messenger Ribonucleic Acid (mRNA) levels using Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Elevated levels of both were observed in tumour and inferior vena cava tumour thrombus tissues. Using Short Hairpin RNA (shRNA) technology, we inhibited CXCR2 and Snail-1 expression to investigate their impact on EMT, invasiveness, and metastatic potential in RCC cells. RESULTS: Compared with that in the Short Hairpin RNA-Negative Control (ShNC) group, inhibition of CXCR2 and Snail-1 suppressed the degree of EMT, invasiveness, and metastatic ability of RCC cells (p < 0.01). Further mechanistic studies showed that CXCR2/Snail-1 participated in the formation and progression of RCC by regulating the extracellular signal-regulated kinase 1/2 (ERK1/2) signalling pathways. Additionally, compared with that in the ShNC group, knockdown of CXCR2 and Snail-1 significantly inhibited the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9; p < 0.01), thereby regulating the metastasis of RCC. CONCLUSIONS: Our findings suggest that CXCR2/Snail-1-induced EMT plays an important role in the formation and progression of RCC with inferior vena cava tumour thrombus. CXCR2/Snail-1 participates in the invasion and metastasis of RCC by regulating the expression of multiple signalling pathways and related genes. These results provide new insights and directions for the treatment of RCC.


Assuntos
Carcinoma de Células Renais , Progressão da Doença , Transição Epitelial-Mesenquimal , Neoplasias Renais , Fatores de Transcrição da Família Snail , Veia Cava Inferior , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/secundário , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Invasividade Neoplásica , Fatores de Transcrição da Família Snail/metabolismo , Células Tumorais Cultivadas , Veia Cava Inferior/patologia
3.
Angew Chem Int Ed Engl ; : e202402371, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763920

RESUMO

2D compounds exfoliated from weakly bonded bulk materials with van der Waals (vdW) interaction are easily accessible. However, the strong internal ionic/covalent bonding of most inorganic crystal frameworks greatly hinders 2D material exfoliation. Herein, we first proposed a radical/strain-synergistic strategy to exfoliate non-vdW interacting pseudo-layered phosphate framework. Specifically, hydroxyl radicals (•OH) distort the covalent bond irreversibly, meanwhile, H2O molecules as solvents, further accelerating interlayered ionic bond breakage but mechanical expansion. The innovative 2D laminar NASICON-type Na3V2(PO4)2O2F crystal, exfoliated by •OH/H2O synergistic strategy, exhibits enhanced sodium-ion storage capacity, high-rate performance (85.7 mA h g-1 at 20 C), cyclic life (2300 cycles), and ion migration rates, compared with the bulk framework. Importantly, this chemical/physical dual driving technique realized the effective exfoliation for strongly coupled pseudo-layered frameworks, which accelerates 2D functional material development.

4.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673851

RESUMO

Neutrophil elastase (NE) is taken up by macrophages, retains intracellular protease activity, and induces a pro-inflammatory phenotype. However, the mechanism of NE-induced pro-inflammatory polarization of macrophages is not well understood. We hypothesized that intracellular NE degrades histone deacetylases (HDAC) and Sirtuins, disrupting the balance of lysine acetylation and deacetylation and resulting in nuclear to cytoplasmic translocation of a major alarmin, High Mobility Group Box 1 (HMGB1), a pro-inflammatory response in macrophages. Human blood monocytes were obtained from healthy donors or from subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Monocytes were differentiated into blood monocyte derived macrophages (BMDMs) in vitro. Human BMDMs were exposed to NE or control vehicle, and the abundance of HDACs and Sirtuins was determined by Western blotting of total cell lysates or nuclear extracts or determined by ELISA. HDAC, Sirtuin, and Histone acetyltransferase (HAT) activities were measured. NE degraded most HDACs and Sirtuin (Sirt)1, resulting in decreased HDAC and sirtuin activities, with minimal change in HAT activity. We then evaluated whether the NE-induced loss of Sirt activity or loss of HDAC activities would alter the cellular localization of HMGB1. NE treatment or treatment with Trichostatin A (TSA), a global HDAC inhibitor, both increased HMGB1 translocation from the nucleus to the cytoplasm, consistent with HMGB1 activation. NE significantly degraded Class I and II HDAC family members and Sirt 1, which shifted BMDMs to a pro-inflammatory phenotype.


Assuntos
Proteína HMGB1 , Histona Desacetilases , Elastase de Leucócito , Macrófagos , Sirtuína 1 , Humanos , Acetilação , Células Cultivadas , Fibrose Cística/metabolismo , Histona Acetiltransferases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Proteína HMGB1/metabolismo , Ácidos Hidroxâmicos , Elastase de Leucócito/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Proteólise , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sirtuína 1/metabolismo
5.
Cancer Lett ; 591: 216893, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636892

RESUMO

The oncogenic properties of Nucleobindin2 (NUCB2) have been observed in various cancer types. Nevertheless, the precise understanding of the biological functions and regulatory mechanisms of NUCB2 in osteosarcoma remains limited. This investigation reported that NUCB2 was significantly increased upon glucose deprivation-induced metabolic stress. Elevated NUCB2 suppressed glucose deprivation-induced cell death and reactive oxygen species (ROS) increase. Depletion of NUCB2 resulted in a reduction in osteosarcoma cell proliferation as well as metastatic potential in vitro and in vivo. Mechanically, NUCB2 ablation suppressed C-X-C Motif Chemokine Ligand 8 (CXCL8) expression which then reduced programmed cell death 1 ligand 1 (PD-L1) expression and stimulated anti-tumor immunity mediated through cytotoxic T cells. Importantly, a combination of NUCB2 depletion with anti-PD-L1 treatment improved anti-tumor T-cell immunity in vivo. Moreover, we further demonstrated that NUCB2 interacted with NUCKS1 to inhibit its degradation, which is responsible for the transcriptional regulation of CXCL8 expression. Altogether, the outcome emphasizes the function of NUCB2 in osteosarcoma and indicates that NUCB2 elevates osteosarcoma progression and immunosuppressive microenvironment through the NUCKS1/CXCL8 pathway.


Assuntos
Neoplasias Ósseas , Proteínas de Ligação ao Cálcio , Progressão da Doença , Interleucina-8 , Osteossarcoma , Microambiente Tumoral , Osteossarcoma/imunologia , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/genética , Humanos , Animais , Linhagem Celular Tumoral , Interleucina-8/metabolismo , Interleucina-8/genética , Camundongos , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Microambiente Tumoral/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proliferação de Células , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Regulação Neoplásica da Expressão Gênica , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Linfócitos T Citotóxicos/imunologia , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo
6.
J Colloid Interface Sci ; 667: 111-118, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38626654

RESUMO

Due to the rapid increase in the number of spent lithium-ion batteries, there has been a growing interest in the recovery of degraded graphite. In this work, a rapid thermal shock (RTS) strategy is proposed to regenerate spent graphite for use in lithium-ion batteries. The results of structural and morphological characterization demonstrate that the graphite is well regenerated by the RTS process. Additionally, an amorphous carbon layer forms and coats onto the surface of the graphite, contributing to excellent rate performance. The regenerated graphite (RG-1000) displays excellent rate performance, with capacities of 413 mAh g-1 at 50 mA g-1 and 102.1 mAh g-1 at 1000 mA g-1, respectively. Furthermore, it demonstrates long-term cycle stability, maintaining a capacity of 80 mAh g-1 at 1000 mA g-1 with a capacity retention of 78.4 % after 600 cycles. This RTS method enables rapid and efficient regeneration of spent graphite anodes for lithium-ion batteries, providing a facile and environmentally friendly strategy for their direct regeneration.

7.
Biochem Pharmacol ; 224: 116208, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621423

RESUMO

Homeobox B9 (HOXB9) has been shown to play a critical role in several tumors. However, the precise biological mechanisms and functions of HOXB9 in osteosarcoma remain largely unknown. In this study, we found that HOXB9 was increased upon glucose starvation. Elevated HOXB9 suppressed osteosarcoma cell death and supported cell growth and migration under glucose starvation. Further mechanistic studies demonstrated that HOXB9 directly bound to the promoter of secreted phosphoprotein 1 (SPP1) and transcriptionally upregulated SPP1 expression which then led cell death decrease and cell growth increase under glucose deprivation environment. Clinically, HOXB9 was significantly upregulated in osteosarcoma compared with normal tissues and increase of HOXB9 expression was positively associated with the elevation of SPP1 in osteosarcoma. Overall, our study illustrates that HOXB9 contributes to malignancy in osteosarcoma and inhibits cell death through transcriptional upregulating SPP1 under glucose starvation.


Assuntos
Neoplasias Ósseas , Sobrevivência Celular , Glucose , Proteínas de Homeodomínio , Osteopontina , Osteossarcoma , Regulação para Cima , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Humanos , Glucose/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Linhagem Celular Tumoral , Osteopontina/genética , Osteopontina/metabolismo , Sobrevivência Celular/fisiologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica
8.
Int J Biol Macromol ; 268(Pt 2): 131625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631569

RESUMO

Nano zero-valent iron (nZVI) is an advanced environmental functional material for the degradation of tetrabromobisphenol A (TBBPA). However, high surface energy, self-agglomeration and low electron selectivity limit degradation rate and complete debromination of bare nZVI. Herein, we presented biomass-derived cellulose nanocrystals (CNC) modified nZVI (CNC/nZVI) for enhanced TBBPA removal. The effects of raw material (straw, filter paper and cotton), process (time, type and concentration of acid hydrolysis) and synthesis methods (in-situ and ex-situ) on fabrication of CNC/nZVI were systematically evaluated based on TBBPA removal performance. The optimized CNC-S/nZVI(in) was prepared via in-situ liquid-phase reduction using straw as raw material of CNC and processing through 44 % H2SO4 for 165 min. Characterizations illustrated nZVI was anchored to the active sites at CNC interface through electrostatic interactions, hydrogen bonds and FeO coordinations. The batch experiments showed 0.5 g/L CNC-S/nZVI(in) achieved 96.5 % removal efficiency at pH = 7 for 10 mg/L initial TBBPA. The enhanced TBBPA dehalogenation by CNC-S/nZVI(in), involving in initial adsorption, reduction process and partial detachment of debrominated products, were possibly attributed to elevated pre-adsorption capacity and high-efficiency delivery of electrons synergistically. This study indicated that fine-tuned fabrication of CNC/nZVI could potentially be a promising alternative for remediation of TBBPA-contaminated aquatic environments.


Assuntos
Biomassa , Celulose , Ferro , Nanopartículas , Bifenil Polibromatos , Bifenil Polibromatos/química , Celulose/química , Nanopartículas/química , Ferro/química , Poluentes Químicos da Água/química , Adsorção
10.
Opt Lett ; 49(8): 2181-2184, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621106

RESUMO

In order to address the high-power consummation issue of conventional multi-input and multi-output (MIMO) adaptive equalizer (AEQ) for short-reach coherent transmissions, several state-of-the-art low-complexity AEQs have been proposed. In our work, optimized adaptation algorithms for low-complexity real-valued (RV) AEQs with different structures are analyzed. Moreover, an approach to avoid introducing additional computational complexity due to the optimized adaptation process is presented here. The advantages of proposed optimized adaptation algorithms are experimentally demonstrated in a 25 Gbaud dual-polarization 16-quadrature-amplitude-modulation (DP-16QAM) back-to-back (BtB) intradyne system with an overall bandwidth of 14 GHz. Experimental results show that a similar performance as the conventional AEQ could be achieved by using proposed adaptation algorithms and reducing the number of multiplications with up to ∼65%.

11.
J Colloid Interface Sci ; 666: 346-354, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603877

RESUMO

The unique electronic and crystal structures of rare earth metals (RE) offer promising opportunities for enhancing the hydrogen evolution reaction (HER) properties of materials. In this work, a series of RE (Sm, Nd, Pr and Ho)-doped Rh@NSPC (NSPC stands for N, S co-doped porous carbon nanosheets) with sizes less than 2 nm are prepared, utilizing a simple, rapid and solvent-free joule-heat pyrolysis method for the first time. The optimized Sm-Rh@NSPC achieves HER performance. The high-catalytic performance and stability of Sm-Rh@NSPC are attributed to the synergistic electronic interactions between Sm and Rh clusters, leading to an increase in the electron cloud density of Rh, which promotes the adsorption of H+, the dissociation of Rh-H bonds and the release of H2. Notably, the overpotential of the Sm-Rh@NSPC catalyst is a mere 18.1 mV at current density of 10 mAcm-2, with a Tafel slope of only 15.2 mV dec-1. Furthermore, it exhibits stable operation in a 1.0 M KOH electrolyte at 10 mA cm-2 for more than 100 h. This study provides new insights into the synthesis of composite RE hybrid cluster nanocatalysts and their RE-enhanced electrocatalytic performance. It also introduces fresh perspectives for the development of efficient electrocatalysts.

12.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572590

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Exossomos/metabolismo , Receptor Smoothened , Proteínas Hedgehog/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Diabetes Mellitus/metabolismo
13.
Antioxidants (Basel) ; 13(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539828

RESUMO

Scientific evidence attests that the epidermis receives excessive ultraviolet B (UVB) radiation, triggering the generation of substantial quantities of reactive oxygen species (ROS), which disrupted the delicate equilibrium of oxidation-reduction, leading to oxidative stress and inflammation. The historical use of honeysuckle polyphenols (HPs) has garnered our attention due to their efficacy in inhibiting oxidative damage. In this study, HPs were prepared from honeysuckle flowers employing an ultrasonic-assisted extraction method and quantitatively analyzed by a LC-MS/MS, and the mechanisms underlying HPs' antioxidative and anti-inflammatory effects on a UVB-irradiated HaCaT cell model were systematically investigated. The results showed that HPs had a significant cellular repair effect on UVB-irradiated HaCaT cells (p < 0.001). The mechanism of action indicated that HPs could allow Nrf2 to enter the nucleus by regulating the dissociation of Nrf2 from Keap1, which further increases the activity of downstream proteases (SOD and CAT), increases ROS scavenging, and reduces the intracellular malondialdehyde (MDA) level. In addition, HPs could down-regulate Toll-like receptor 4 (TLR4) and inhibit NF-κB (P65) dissociating from IκBα, resulting in a decrease in NF-κB (P65) entry into the nucleus and a decrease in inflammatory factors (TNF-α, IL-6, and IL-1ß). In addition, four key compounds in HPs, including chlorogenic acid, quercetin, isorhamnetin, and luteolin, were selected to verify the mechanism of HPs repairing UVB damage using molecular docking techniques. The experiment suggested that four key active compounds could effectively occupy the Kelch homologue (Kelch) structural domain of Keap1, competitively bind with Nrf2, and facilitate the promotion of Nrf2 binding, ultimately enhancing the translocation of Nrf2 into the nucleus. In addition, four key active compounds could effectively interact with NF-κB (P65) through hydrogen bonding, van der Waals forces, and electrostatic forces to inhibit its entry into the nucleus. In summary, HPs can effectively repair the damage of HaCaT cells by UVB radiation and can be used to develop health and cosmetic products for the treatment of UV radiation-induced diseases.

14.
Int J Biol Macromol ; 264(Pt 2): 130784, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467212

RESUMO

Along with the developing of flexible electronics, there is a strong interest in high performance flexible energy storage materials. As natural carbohydrate polymer, cellulose fibers have potential applications in the area due to their biodegradability and flexibility. However, their conductive and electrochemical properties are impossible to meet the demands of practical applications. In this study, cellulose fibers were combined with polyaniline to develop novel paper-based supercapacitor electrode material. Cellulose fibers were firstly coordinated to Cu(II) and subsequently involved in polymerization of polyaniline. Not only the mass loading of polyaniline was significantly increased, but also an impressive area specific capacitance (2767 mF/cm2 at 1 mA/cm2) was achieved. The developed strategy is efficient, environmentally friendly, and has implications for the development of cellulosic paper-based advanced functional materials.


Assuntos
Celulose , Cobre , Compostos de Anilina , Eletrodos
15.
J Colloid Interface Sci ; 664: 607-616, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490036

RESUMO

Expanded graphite (EG) stands out as a promising material for the negative electrode in potassium-ion batteries. However, its full potential is hindered by the limited diffusion pathway and storage sites for potassium ions, restricting the improvement of its electrochemical performance. To overcome this challenge, defect engineering emerges as a highly effective strategy to enhance the adsorption and reaction kinetics of potassium ions on electrode materials. This study delves into the specific effectiveness of defects in facilitating potassium storage, exploring the impact of defect-rich structures on dynamic processes. Employing ball milling, we introduce surface defects in EG, uncovering unique effects on its electrochemical behavior. These defects exhibit a remarkable ability to adsorb a significant quantity of potassium ions, facilitating the subsequent intercalation of potassium ions into the graphite structure. Consequently, this process leads to a higher potassium voltage. Furthermore, the generation of a diluted stage compound is more pronounced under high voltage conditions, promoting the progression of multiple stage reactions. Consequently, the EG sample post-ball milling demonstrates a notable capacity of 286.2 mAh g-1 at a current density of 25 mA g-1, showcasing an outstanding rate capability that surpasses that of pristine EG. This research not only highlights the efficacy of defect engineering in carbon materials but also provides unique insights into the specific manifestations of defects on dynamic processes, contributing to the advancement of potassium-ion battery technology.

16.
Int J Biol Macromol ; 264(Pt 1): 130599, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442834

RESUMO

Cellulosic paper-based electrode materials have attracted increasing attention in the field of flexible supercapacitor. As a conductive polymer, polyaniline exhibits high theoretical pseudocapacitive capacitance and has been applied in paper-based electrode materials along with cellulose fibers. However, the stacking of polyaniline usually leads to poor performance of electrodes. In this study, metal-organic coordination polymers of zirconium-alizarin red S and zirconium-phytic acid are applied to modulate the polyaniline layer to obtain high-performance cellulosic paper-based electrode materials. Zirconium hydroxide is firstly loaded on cellulose fibers while alizarin red S and phytic acid are introduced to regulate the morphology of polyaniline through doping and coordination processes. The results show that the introduction of dual coordination polymers is effective to regulate the morphology of polyaniline on cellulose fibers. The performances of the paper-based electrode materials, including electrical conductivity and electrochemistry, are apparently improved. It provides a promising strategy for the potential development of economical and green electrode materials in the conventional paper-making process.


Assuntos
Compostos de Anilina , Antraquinonas , Celulose , Polímeros , Zircônio , Ácido Fítico , Eletrodos
17.
Adv Mater ; 36(23): e2400690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38373436

RESUMO

The stable phase transformation during electrochemical progress drives extensive research on vanadium-based polyanions in sodium-ion batteries (SIBs), especially Na3V2(PO4)3 (NVP). And the electron transfer between V3+/4+ redox couple in NVP could be generally achieved, owing to the confined crystal variation during battery service. However, the more favorable V4+/5+ redox couple is still in hard-to-access situation due to the high barrier and further brings about the corresponding inefficiency in energy densities. In this work, the multilevel redox in NVP frame (MLNP) alters reaction pathway to undergo homeostatic solid solution process and breaks the high barrier of V4+/5+ at high voltage, taking by progressive transition metal (V, Fe, Ti, and Cr) redox couple. The diversified reaction paths across diffusion barriers could be realized by distinctive release/uptake of inactive Na1 site, confirmed by the calculations of density functional theory. Thereby its volume change is merely 1.73% during the multielectron-transfer process (≈2.77 electrons). MLNP cathode could achieve an impressive energy density of 440 Wh kg-1, driving the leading development of MLNP among other NASICON structure SIBs. The integration of multiple redox couples with low strain modulates the reaction pathway effectively and will open a new avenue for fabricating high-performance cathodes in SIBs.

18.
J Am Chem Soc ; 146(7): 4652-4664, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38265705

RESUMO

Since sodium-ion batteries (SIBs) have become increasingly commercialized in recent years, Na3V2(PO4)2O2F (NVPOF) offers promising economic potential as a cathode for SIBs because of its high operating voltage and energy density. According to reports, NVPOF performs poorly in normal commercial poly(vinylidene fluoride) (PVDF) binder systems and performs best in combination with aqueous binder. Although in line with the concept of green and sustainable development for future electrode preparation, aqueous binders are challenging to achieve high active material loadings at the electrode level, and their relatively high surface tension tends to cause the active material on the electrode sheet to crack or even peel off from the collector. Herein, a cross-linkable and easily commercial hybrid binder constructed by intermolecular hydrogen bonding (named HPP) has been developed and utilized in an NVPOF system, which enables the generation of a stable cathode electrolyte interphase on the surface of active materials. According to theoretical simulations, the HPP binder enhances electronic/ionic conductivity, which greatly lowers the energy barrier for Na+ migration. Additionally, the strong hydrogen-bond interactions between the HPP binder and NVPOF effectively prevent electrolyte corrosion and transition-metal dissolution, lessen the lattice volume effect, and ensure structural stability during cycling. The HPP-based NVPOF offers considerably improved rate capability and cycling performance, benefiting from these benefits. This comprehensive binder can be extended to the development of next-generation energy storage technologies with superior performance.

19.
Int J Food Sci Nutr ; 75(3): 264-276, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38238900

RESUMO

Diabetic kidney disease is associated with the dysbiosis of the gut microbiota and its metabolites. db/db mice were fed chow diet with or without 0.4% resveratrol for 12 weeks, after which the gut microbiota, faecal short-chain fatty acids (SCFAs), and renal fibrosis were analysed. Resveratrol ameliorated the progression of diabetic kidney disease and alleviated tubulointerstitial fibrosis. Further studies showed that gut microbiota dysbiosis was modulated by resveratrol, characterised by the expansion of SCFAs-producing bacteria Faecalibaculum and Lactobacillus, which increased the concentrations of SCFAs (especially acetic acid) in the faeces. Moreover, microbiota transplantation experiments found that alteration of the gut microbiota contributed to the prevention of diabetic kidney disease. Acetate treatment ameliorated proteinuria, glomerulosclerosis and tubulointerstitial fibrosis in db/db mice. Overall, resveratrol improved the progression of diabetic kidney disease by suppressing tubulointerstitial fibrosis, which may be involved, at least in part, in the regulation of the gut microbiota-SCFAs axis.


Assuntos
Nefropatias Diabéticas , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Resveratrol , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Resveratrol/farmacologia , Camundongos , Masculino , Fibrose , Fezes/microbiologia , Disbiose , Rim/efeitos dos fármacos , Camundongos Endogâmicos C57BL
20.
Biosens Bioelectron ; 247: 115913, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091898

RESUMO

In this study, a background-free surface-enhanced Raman scattering (SERS) chip with a sandwich configuration was fabricated to enable reliable detection and photothermal inactivation of multiple bacteria. The SERS chip consists of a graphene-coated, phenylboronic-modified plasmonic gold substrate (pAu/G/PBA), and two aptamer-functionalized core (gold)-shell (Prussian blue/Poly-L-lysine and 4-mercaptobenzonitrile/polydopamine) SERS tags (Au@PB@PLL@Apt and Au@MB@PDA@Apt). The detection signals rely on the characteristic and nonoverlapping Raman bands of the SERS tags within the Raman-silent region (1800-2800 cm-1), where no background signals from the sample matrix are observed, leading to improved detection sensitivity and accuracy. Considering the relatively large size of bacteria (e.g., micron level), a rapid Raman mapping technique was chosen over conventional point-scan methods to achieve more reliable quantitative analysis of bacteria. This technique involves collecting and analyzing intensity signals of SERS tags from all the scattering points with an average ensemble effect, which is facilitated by the use of Python. As a proof-of-concept, model bacterium of Salmonella typhimurium and Staphylococcus aureus were successfully detected using the SERS chip with a dynamic range of 10-107 CFU/mL. Additionally, the SERS chip demonstrated successful detection of these bacteria in whole blood samples. Moreover, the photothermal effect of pAu/G led to efficient bacteria elimination, achieving approximately 100% eradication. This study integrated a background-free SERS chip with a Python-assisted rapid Raman mapping technique, resulting in a reliable, rapid and accurate method for detecting and eliminating multiple bacteria, which may provide a promising alternative for multiple screening of bacteria in real samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Bactérias , Ouro , Salmonella typhimurium , Análise Espectral Raman/métodos , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA