Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542282

RESUMO

Gaining insight into osmotic pressure and its biological implications is pivotal for revealing mechanisms underlying numerous fundamental biological processes across scales and will contribute to the biomedical and pharmaceutical fields. This review aims to provide an overview of the current understanding, focusing on two central issues: (i) how to determine theoretically osmotic pressure and (ii) how osmotic pressure affects important biological activities. More specifically, we discuss the representative theoretical equations and models for different solutions, emphasizing their applicability and limitations, and summarize the effect of osmotic pressure on lipid phase separation, cell division, and differentiation, focusing on the mechanisms underlying the osmotic pressure dependence of these biological processes. We highlight that new theory of osmotic pressure applicable for all experimentally feasible temperatures and solute concentrations needs to be developed, and further studies regarding the role of osmotic pressure in other biological processes should also be carried out to improve our comprehensive and in-depth understanding. Moreover, we point out the importance and challenges of developing techniques for the in vivo measurement of osmotic pressure.


Assuntos
Pressão Osmótica , Soluções , Temperatura
2.
Front Mol Biosci ; 10: 1154074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876050

RESUMO

Gaining insight into the two-dimensional receptor-ligand interactions, which play a significant role in various pivotal biological processes such as immune response and cancer metastasis, will deepen our understanding of numerous physiological and pathological mechanisms and contribute to biomedical applications and drug design. A central issue involved is how to measure the in situ receptor-ligand binding kinetics. Here, we review several representative mechanical-based and fluorescence-based methods, and briefly discuss the strengths and weaknesses for each method. In addition, we emphasize the great importance of the combination of experimental and computational methods in studying the receptor-ligand interactions, and further studies should focus on the synergistic development of experimental and computational methods.

3.
iScience ; 24(9): 102945, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34458697

RESUMO

The Laplace pressure is one of the most fundamental regulators that determine cell shape and function, and thus has been receiving widespread attention. Here, we systemically investigate the effect of the Laplace pressure on the shape and function of the cells during cytokinesis. We find that the Laplace pressure during cytokinesis can directly control the distribution and size of cell blebbing and adjust the symmetry of cell division by virtue of changing the characteristics of cell blebbing. Further, we demonstrate that the Laplace pressure changes the structural uniformity of cell boundary to regulate the symmetry of cell division. Our findings provide further insights as to the important role of the Laplace pressure in regulating the symmetry of cell division during cytokinesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA