Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(11): 14133-14143, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38447141

RESUMO

The unique structural sensitivity of photonic crystals (PCs) endows them with stretchable or elastic tunability for light propagation and spontaneous emission modulation. Hydrogel PCs have been demonstrated to have biocompatibility and flexibility for potential human health detection and environmental security monitoring. However, current elastic PCs still possess a fixed elastic modulus and uncontrollable structural colors based on a tunable elastic modulus, posing considerable challenges for in situ detection, particularly in wearable or portable sensing devices. In this work, we introduced a novel chemo-mechanical transduction mechanism embedded within a photonic crystal nanomatrix, leading to the creation of structural colors and giving rise to a visual gustation sensing experience. By utilizing the captivating structural colors generated by the hydrogel PC, we employ abundant optical information to identify various analytes. The finite element analysis proved the electric field distribution in the PC matrix during stretch operations. The elastic-optical behaviors with various chemical cosolvents, including cations, anions, saccharides, or organic acids, were investigated. The mechanism of the Hofmeister effect regulating the elasticity of hydrogels was demonstrated with the network nanostructure of the hydrogels. The hydrogel PC matrix demonstrates remarkable capability in efficiently distinguishing a wide range of cations, anions, saccharides, and organic acids across various concentrations, mixtures, and even real food samples, such as tastes and soups. Through comprehensive research, a precise relationship between the structural colors and the elastic modulus of hydrogel PCs has been established, contributing to the biomatching elastic-optics platform for wearable devices, a dynamic environment, and clinical or health monitoring auxiliary.


Assuntos
Hidrogéis , Paladar , Humanos , Módulo de Elasticidade , Ânions , Cátions
2.
Anal Chem ; 95(23): 9116-9122, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37264966

RESUMO

Electrochemiluminescence (ECL) has numerous merits such as high sensitivity and specificity for the detection applications on pharmacy, food safety, immunoassay, disease diagnosis, environmental monitoring, nucleic acid assay, and clinical treatment. However, the insufficiency of ECL luminescent reagents is restricting their adoption on complex systems or multi-analyte detections. In this work, to improve the selectivity and discrimination of ECL detection with one or less luminescent reagent, we employed multi-stopband photonic crystals (PCs) to enhance assigned ECL. The discrimination of ECL was well investigated to establish the quantitative description with PC stopbands. The multi-stopband PC electrode can facilely achieve 10 antibiotics qualitative and quantitative analysis with 100% accuracy and 0.44 µM LOD in PBS buffer and human serum. The selectivity of ECL detection for multi-analytes can be improved via designed PC luminescence amplifications. The exploration on PC selectivity for ECL enhancement will promote the realistic application of the ECL technique and contribute to the facile and efficient optical platform for clinical or health monitoring.


Assuntos
Medições Luminescentes , Fotometria , Humanos , Medições Luminescentes/métodos , Eletrodos
3.
ACS Nano ; 16(12): 20094-20099, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36314922

RESUMO

Photonic crystals (PCs) with fascinating structural color nanomaterials present effectively spontaneous emission modulation and selectively optical signal amplification. Stretchability or elasticity could enable the feasible tunability for structural colors. Aimed at the regulation of structural colors, we endeavored to achieve the PC nanomatrix evolution and optical property during stretching. In this work, a rainbow structural color by stretchable PCs was exploited to provide abundant optical information for multianalyte recognition. The finite element analysis proved the electric field distribution in the PC matrix, which completely matched with the phenomenon of the measured PC spectra. By simply employing analysis of the multistate PC during stretching, the mono PC matrix chip can differentially enhance fluorescence signals in broad spectral regions, resulting in diverse sensing information for high-efficiency multianalysis. The stretchable PC chip can facilely discriminate 14 similar structured saccharides with a minimum concentration of 10-7 M using only one fluorescence complex. Furthermore, saccharides in different concentrations, mixtures, and real samples (beverages and sweets) also can be successfully distinguished. The exploration on fluorescent stretch dependence behavior of the photonic crystal contributes the biomatching optical platform for wearable devices, dynamic environment, clinical, or health monitoring auxiliary.


Assuntos
Nanoestruturas , Dispositivos Eletrônicos Vestíveis , Óptica e Fotônica , Fótons , Nanoestruturas/química , Elasticidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA