Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2403227, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704731

RESUMO

To effectively treat osteoarthritis (OA), the existing inflammation must be reduced before the cartilage damage can be repaired; this cannot be achieved with a single type of extracellular vesicles (EVs). Here, a hydrogel complex with logic-gates function is proposed that can spatiotemporally controlled release two types of EVs: interleukin 10 (IL-10)+ EVs to promote M2 polarization of macrophage, and SRY-box transcription factor 9 (SOX9)+ EVs to increase cartilage matrix synthesis. Following dose-of-action screening, the dual EVs are loaded into a matrix metalloporoteinase 13 (MMP13)-sensitive self-assembled peptide hydrogel (KM13E) and polyethylene glycol diacrylate/gelatin methacryloyl-hydrogel microspheres (PGE), respectively. These materials are mixed to form a "microspheres-in-gel" KM13E@PGE system. In vitro, KM13E@PGE abruptly released IL-10+ EVs after 3 days and slowly released SOX9+ EVs for more than 30 days. In vivo, KM13E@PGE increased the CD206+ M2 macrophage proportion in the synovial tissue and decreased the tumor necrosis factor-α and IL-1ß levels. The aggrecan and SOX9 expressions in the cartilage tissues are significantly elevated following inflammation subsidence. This performance is not achieved using anti-inflammatory or cartilage repair therapy alone. The present study provides an injectable, integrated delivery system with spatiotemporal control release of dual EVs, and may inspire logic-gates strategies for OA treatment.

2.
Biomedicines ; 11(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38137541

RESUMO

(1) Background: Diabetic cardiomyopathy (DCM) is a unique form of cardiomyopathy that develops as a consequence of diabetes and significantly contributes to heart failure in patients. Esaxerenone, a selective non-steroidal mineralocorticoid receptor antagonist, has demonstrated potential in reducing the incidence of cardiovascular and renal events in individuals with chronic kidney and diabetes disease. However, the exact protective effects of esaxerenone in the context of DCM are still unclear. (2) Methods: The DCM model was successfully induced in mice by administering streptozotocin (55 mg/kg per day) for five consecutive days. After being fed a normal diet for 16 weeks, echocardiography was performed to confirm the successful establishment of the DCM model. Subsequent sequencing and gene expression analysis revealed significant differences in gene expression in the DCM group. These differentially expressed genes were identified as potential targets for DCM. By utilizing the Swiss Target Prediction platform, we employed predictive analysis to identify the potential targets of esaxerenone. A protein-protein-interaction (PPI) network was constructed using the common targets of esaxerenone and DCM. Enrichment analysis was conducted using Metascape. (3) Results: Compared to the control, the diabetic group exhibited impaired cardiac function and myocardial fibrosis. There was a total of 36 common targets, with 5 key targets. Enrichment analysis revealed that the chemokine and PI3K-Akt signaling pathway was considered a crucial pathway. A target-pathway network was established, from which seven key targets were identified. All key targets exhibited good binding characteristics when interacting with esaxerenone. (4) Conclusion: The findings of this study suggest that esaxerenone exhibits a favorable therapeutic effect on DCM, primarily by modulating the chemokine and PI3K-Akt signaling pathway.

3.
Theranostics ; 13(15): 5365-5385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908723

RESUMO

Background: Surgical sutures for sealing gastric perforations (GP) are associated with severe inflammation and postoperative adhesions. Hydrogel bioadhesives offer a potential alternative for sutureless repair of GP; however, their application in minimally invasive surgery is limited due to their prefabricated patch-form, lacking in situ gelation capability. In this study, we emphasized an all-in-one minimally invasive strategy for sutureless repair of acute GP. Methods: an injectable photocurable Janus hydrogel was synthesized, and their ability to seal GP was performed. A rat GP model was used to verify the wound healing and antiadhesion efficiency of hydrogels, and a rabbit GP model was used to verify their laparoscopic feasibility. A fresh human corpse GP model was further employed to verify the user-friendliness of a minimally invasive deliverable (MID) device. A minipig GP model was utilized to evaluate the all-in-one minimally invasive strategy for the treatment of acute GP. Results: Such injectable Janus hydrogel exhibited asymmetric adhesiveness, where the inner-facing side of the hydrogel displays strong sealing and wound healing abilities for GP, while the outward-facing side prevents postoperative adhesion formation. We further developed a minimally invasive deliverable (MID) device integrating hydrogel-delivery parts and photocrosslinking-gelation parts in a laparoscope system. The precise delivery and rapid fluid-tight sealing process of the injectable Janus hydrogel using the MID device for in situ GP repair were demonstrated in a simulated clinical scenario. The in vivo effectiveness of GP sutureless repair was successfully validated in porcine models, with further exploration of the underlying mechanism. Conclusions: Our findings reveal that the injectable Janus hydrogel offers an all-in-one strategy for sutureless GP repair and concurrent prevention of postoperative adhesion formation by incorporating the MID device in minimally invasive surgery, presenting the significant potential to reduce patient surgical complications.


Assuntos
Hidrogéis , Procedimentos Cirúrgicos Minimamente Invasivos , Ratos , Humanos , Animais , Coelhos , Suínos , Porco Miniatura
4.
Acta Biomater ; 157: 321-336, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481504

RESUMO

Bone marrow mesenchymal stromal cell-derived exosomes (BMSC-Exos) can recruit stem cells for bone repair, with neovessels serving as the main migratory channel for stem cells to the injury site. However, existing exosome (Exo) delivery strategies cannot reach the angiogenesis phase following bone injury. To that end, an enzyme-sensitive Exo delivery material that responds to neovessel formation during the angiogenesis phase was designed in the present study to achieve spatiotemporally controlled Exo release. Herein, matrix metalloproteinase-1 (MMP1) was found to be highly expressed in neovascularized bone; as a result, we proposed an injectable MMP1-sensitive hydrogel microspheres (KGE) made using a microfluidic chip prepared by mixing self-assembling peptide (KLDL-MMP1), GelMA, and BMSC-Exos. The results revealed that KGE microspheres had a uniform diameter of 50-70 µm, ideal for minimally invasive injection and could release exosomes in response to MMP1 expression. In vitro experiments demonstrated that KGE had less cytotoxicity and could promote the migration and osteodifferentiation of BMSCs. Furthermore, in vivo experiments confirmed that KGE could promote bone repair during angiogenesis by recruiting CD90+ stem cells via neovessels. Collectively, our results suggest that injectable enzyme-responsive KGE microspheres could be a promising Exo-secreting material for accelerating neovascularized bone healing. STATEMENT OF SIGNIFICANCE: Exosomes can spread through blood vessels and activate stem cells to participate in bone repair, but under normal circumstances, exosomes lacking sustained-release delivery materials cannot be maintained until the angiogenesis phase. In this study, we found that MMP1 was highly expressed in neovascularized bone, then we proposed an MMP1-sensitive injectable microsphere that carries exosomes and responds temporally and spatially to neovascularization, which maximizes the ability of exosomes to recruit stem cells. Different from previous strategies that focus on promoting angiogenesis to accelerate bone healing, this is a brand new delivery strategy that is stimuli-responsive to neovessel formation. In addition, the preparation of self-assembled peptide microspheres by a microfluidic chip is also proposed for the first time.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Metaloproteinase 1 da Matriz/metabolismo , Microesferas , Exossomos/metabolismo
5.
Cells ; 11(22)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36429022

RESUMO

Non-essential proteins for viral replication affect host cell metabolism, while the function of the UL43 protein of herpes simplex virus 1 (HSV-1) is not clear. Herein, we performed a comprehensive microarray analysis of HUVEC cells infected with HSV-1 and its UL43-deficient mutant and found significant variation in genes associated with cellular energy metabolic pathways. The localization of UL43 protein in host cells and how it affects cellular energy metabolism pathways were further investigated. Internalization analysis showed that the UL43 protein could be endocytosis-mediated by YPLF motif (aa144-147) and localized to mitochondria. At the same time, more ATP was produced by coupling with mitochondrial small G protein ARF-like 2 (ARL2) GTPase, which triggered the phosphorylation of ANT1 (SLC25A4) to affect the opening degree of mitochondrial permeability transition pore (mPTP), and significantly promoted the aerobic oxidation and oxidative phosphorylation of glucose. Our study shows that UL43 mediates the improvement of host cell metabolism after HSV-1 infection. Additionally, UL43 protein could be a valuable ATP-stimulating factor for mammalian cells.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Proteínas de Membrana/metabolismo , Herpesvirus Humano 1/metabolismo , Metabolismo Energético , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
6.
Life (Basel) ; 12(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36143428

RESUMO

The slow proliferation rate and poor osteodifferentiation ability of inflammatory periodontal membrane stem cells extracted from periodontitis tissues (i-PDLSCs) account for poor efficiency in treating inflammatory bone loss. Exosomes reportedly have inducible and relatively stable components, allowing them to promote inflammatory bone repair, but obtaining i-PDLSCs exosomes with the ability to promote osteodifferentiation is challenging. In the present study, i-PDLSCs were extracted from periodontal membrane tissues of patients with severe periodontitis, and in vitro induction with gallic acid (GA) significantly promoted the proliferative activity of i-PDLSCs at a concentration of 10 mM, with TC0 of 11.057 mM and TC50 of 67.56 mM for i-PDLSCs. After mRNA sequencing, we found that GA could alleviate oxidative stress in i-PDLSCs and increase its mitochondrial membrane potential and glucose aerobic metabolism level, thus promoting the osteodifferentiation of i-PDLSCs. After exosomes of i-PDLSCs after GA induction (i-EXO-GA) were isolated by differential centrifugation, we found that 200 ug/mL of i-EXO-GA could remarkably promote the osteodifferentiation of i-PDLSCs. Overall, our results suggest that GA induction can enhance the proliferation and osteodifferentiation in primary cultures of i-PDLSCs in vitro, mediated by alleviating oxidative stress and glycometabolism levels in cells, which further influences the osteodifferentiation-promoting ability of i-EXO-GA. Overall, we provide a viable cell and exosome induction culture method for treating inflammatory alveolar defects associated with periodontitis.

7.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 40(4): 377-385, 2022 Jul 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38596952

RESUMO

OBJECTIVES: Pathological bone resorption is common in chronic periodontitis. However, the effect of exosomes (Exo) secreted by periodontal ligament stem cells (PDLSCs) on bone resorption is unclear. This study explored the Exo of inflammatory PDLSCs, their protein components, and their effects on osteoclast differentiation. METHODS: PDLSCs were isolated from the periodontal ligament tissues of orthodontic patients and those with chronic periodontitis. The surface markers of PDLSCs were detected by flow cytometry. Exo were characterized by Western blot, transmission electron microscope (TEM), bicinchoninic acid assay (BCA), nanosight tracking analysis (NTA). The protein components of Exo were detected by protein profiling. The expression levels of differentially expressed proteins tumor necrosis factor-α (TNF-α), receptor activator of nuclear factor-κB ligand (RANKL), interleukin (IL)-1α, transforming growth factor ß (TGF-ß), and bone morphogenetic protein 2 (BMP-2) were verified by enzyme linked immunosorbent assay (ELISA). Then, 10, 100, and 1 000 µg·mL-1 of Exo-CP or Exo-WT were added to RAW264.7 medium, and the expression levels of osteoclast-related indicators were detected by real time quantitative polymerase chain reaction (RT-qPCR), Western blot, and tartrate resistant acid phosphatase (TRAP) staining at 5 days. Experimental data were statistically analyzed using SPSS 24.0 software. RESULTS: The differentially expressed proteins enriched in Exo-CP were mainly related to the tumor necrosis factor (TNF) signaling, osteoclast differentiation, and nuclear transcription factor κB (NF-κB) signaling pathways. ELISA experiments confirmed Exo-CP had high expression of TNF-α, RANKL, and IL-1α and low expression of TGF-ß1 and BMP-2 (P<0.05). Adding Exo-CP to RAW264.7 significantly increased the expression of mRNA and proteins related to osteoclast differentiation of cells. In a concentration-dependent manner, the effect of Exo-CP on osteoclast differentiation at concentrations of 100 and 1 000 µg·mL-1 was significantly higher than that on the 10 µg·mL-1 concentration group (P<0.05). CONCLUSIONS: Pathological bone resorption of chronic periodontitis may be caused by the activation of Exo-CP to promote osteoclast differentiation. The main protein in Exo may be RANKL and TNF-α. This research provides a new perspective on pathological bone resorption in chronic periodontitis.

8.
Medicine (Baltimore) ; 100(47): e27777, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34964740

RESUMO

ABSTRACT: Keloid is a benign fibroproliferative skin tumor. The respective functions of fibroblasts and vascular endothelial cells in keloid have not been fully studied. The purpose of this study is to identify the respective roles and key genes of fibroblasts and vascular endothelial cells in keloids, which can be used as new targets for diagnosis or treatment.The microarray datasets of keloid fibroblasts and vascular endothelial cells were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened out. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for functional enrichment analysis. The search tool for retrieval of interacting genes and Cytoscape were used to construct protein-protein interaction (PPI) networks and analyze gene modules. The hub genes were screened out, and the relevant interaction networks and biological process analysis were carried out.In fibroblasts, the DEGs were significantly enriched in collagen fibril organization, extracellular matrix organization and ECM-receptor interaction. The PPI network was constructed, and the most significant module was selected, which is mainly enriched in ECM-receptor interaction. In vascular endothelial cells, the DEGs were significantly enriched in cytokine activity, growth factor activity and transforming growth factor-ß (TGF-ß) signaling pathway. Module analysis was mainly enriched in TGF-ß signaling pathway. Hub genes were screened out separately.In summary, the DEGs and hub genes discovered in this study may help us understand the molecular mechanisms of keloid, and provide potential targets for diagnosis and treatment.


Assuntos
Biologia Computacional , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Queloide/genética , Fator de Crescimento Transformador beta/farmacologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transcriptoma , Fator de Crescimento Transformador beta/genética , Cicatrização/genética
9.
Hypertens Pregnancy ; 39(4): 405-410, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32744911

RESUMO

OBJECTIVE: To determine whether circadian blood pressure (BP) variation of women with preeclampsia (PE) with severe features was associated with adverse maternal/perinatal outcomes. METHODS: 173 women with PE with severe features were recruitedand categorized into three groups: dipper, non-dipper and reverse dipper type BP group.. Maternal and perinatal outcomes were compared among groups. RESULTS: There were significant differences in gestational ages, premature delivery, retinopathy, HELLP syndrome, mean birth weight, rate of low birth weight infants and fetal growth restriction. CONCLUSION: Aberrant circadian pattern of BP in women with PE with severe features was associated with several adverse maternal/perinatal outcomes.


Assuntos
Pressão Sanguínea/fisiologia , Ritmo Circadiano/fisiologia , Pré-Eclâmpsia/fisiopatologia , Nascimento Prematuro/fisiopatologia , Adolescente , Adulto , Determinação da Pressão Arterial , Feminino , Humanos , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Masculino , Pessoa de Meia-Idade , Gravidez , Resultado da Gravidez , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA