Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Plant Sci ; 15: 1340336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590742

RESUMO

China consumes 35% of the world's fertilizer every year; however, most of the nitrogen fertilizers, which are essential for rice cultivation, are not used effectively. In this study, factors affecting the nitrogen leaching loss rate were studied in typical soil and rice varieties in South China. The effects of various irrigation measures on rice growth and nitrogen leaching loss were investigated by conducting experiments with eight groups. These groups included traditional irrigation (TI) and shallow wet irrigation (SWI). The TI is a common irrigation method for farmers in South China, maintaining a water layer of 5-8 cm depth. For SWI, after establishing a shallow water layer usually maintaining at 1-2 cm, paddy is irrigated when the field water level falls to a certain depth, then this process is then repeat as necessary. The nitrogen distribution characteristics were determined using 15N isotope tracing. In addition, the effects of nitrification, denitrification, and microbial composition on soil nitrogen transformation at different depths were studied by microbial functional gene quantification and high-throughput sequencing. The results revealed that in the SWI groups, the total nitrogen leaching loss rate reduced by 0.3-0.8% and the nitrogen use efficiency (NUE) increased by 2.18-4.43% compared with those in the TI groups. After the 15N-labeled nitrogen fertilizer was applied, the main pathways of nitrogen were found to be related to plant absorption and nitrogen residues. Furthermore, paddy soil ammonia-oxidizing archaea were more effective than ammonia-oxidizing bacteria for soil ammonia oxidation by SWI groups. The SWI measures increased the relative abundance of Firmicutes in paddy soil, enhancing the ability of rice to fix nitrogen to produce ammonium nitrogen, thus reducing the dependence of rice on chemical fertilizers. Moreover, SWI enhanced the relative abundance of nirS and nosZ genes within surface soil bacteria, thereby promoting denitrification in the surface soil of paddy fields. SWI also promoted ammonia oxidation and denitrification by increasing the abundance and activity of Proteobacteria, Nitrospirae, and Bacteroidetes. Collectively, SWI effectively reduced the nitrogen leaching loss rate and increase NUE.

2.
JACC Basic Transl Sci ; 9(2): 203-219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38510716

RESUMO

The epicardium provides epicardial-derived cells and molecular signals to support cardiac development and regeneration. Zebrafish and mouse studies have shown that ccm2, a cerebral cavernous malformation disease gene, is essential for cardiac development. Endocardial cell-specific deletion of Ccm2 in mice has previously established that Ccm2 is essential for maintenance of the cardiac jelly for cardiac development during early gestation. The current study aimed to explore the function of Ccm2 in epicardial cells for heart development and regeneration. Through genetic deletion of Ccm2 in epicardial cells, our in vivo and ex vivo experiments revealed that Ccm2 is required by epicardial cells to support heart development. Ccm2 regulates epicardial cell adhesion, cell polarity, cell spreading, and migration. Importantly, the loss of Ccm2 in epicardial cells delays cardiac function recovery and aggravates cardiac fibrosis following myocardial infarction. Molecularly, Ccm2 targets the production of cytoskeletal and matrix proteins to maintain epicardial cell function and behaviors. Epicardial Ccm2 plays a critical role in heart development and regeneration via its regulation of cytoskeleton reorganization.

4.
FEBS J ; 291(5): 1008-1026, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38037455

RESUMO

The scaffolding protein programmed cell death protein 10 (Pdcd10) has been demonstrated to play a critical role in renal epithelial cell homeostasis and function by maintaining appropriate water reabsorption in collecting ducts. Both ureter and kidney collecting duct systems are derived from the ureter bud during development. Here, we report that cadherin-16 (Cdh16)-cre drives gene recombination with high specificity in the ureter, but not the bladder, urothelium. The consequences of Pdcd10 deletion on the stratified ureter urothelium were investigated using an integrated approach including messenger RNA (mRNA) expression analysis, immunocytochemistry, and high-resolution confocal and electron microscopy. Loss of Pdcd10 in the ureter urothelium resulted in increased expression of uroplakins (Upks) and keratins (Krts), as well as hypertrophy of the ureter urothelium with an associated increase in the number of proliferation marker protein Ki-67 (Ki67)-expressing cells specifically within the basal urothelium layer. Ultrastructural analysis documented significant modification of the intracellular membrane system, including intracellular vesicle genesis and transport along the basal- to umbrella-cell-layer axis. Additionally, Pdcd10 loss resulted in swelling of Golgi compartments, disruption of mitochondrial cristae structure, and increased lysosomal fusion. Lack of Pdcd10 also resulted in decreased fusiform vesicle formation in umbrella cells, increased secretion of exosome vesicles, and alteration in microvillar structure on apical membranes. Our findings indicate that Pdcd10 expression and its influence on homeostasis is associated with modulation of endomembrane trafficking and organelle biogenesis in the ureter urothelium.


Assuntos
Ureter , Humanos , Urotélio , Mitocôndrias/genética , Complexo de Golgi , Hipertrofia
5.
J Hazard Mater ; 455: 131610, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37201276

RESUMO

Nitrate addition is a biostimulation technique that can improve both the oxidation of acid volatile sulfide (AVS) through autotrophic denitrification and the biodegradation of polycyclic aromatic hydrocarbons (PAHs) via heterotrophic denitrification. However, during the remediation, parts of the dissolved nitrate in the sediment migrates from the sediment to the overlying water, leading to the loss of effective electron acceptor. To overcome this limitation, a combined approached was proposed, which involved nitrocellulose addition and a microbial fuel cell (MFC). Results indicated the nitrate could be slowly released and maintained at a higher concentration over long term. In the combined system, the removal efficiencies of PAHs and AVS were 71.56% and 89.76%, respectively. Furthermore, the voltage attained for the MFC-nitrocellulose treatment was maintained at 146.1 mV on Day 70, which was 5.37 times higher than that of the MFC-calcium nitrate treatment. Sediments with nitrocellulose resulted in lower levels of nitrate and ammonium in the overlying water. Metagenomic results revealed that the combined technology improved the expression of nitrogen-cycling genes. The introduction of MFC inhibited sulfide regeneration during incubation by suppressing the enzyme activity like EC4.4.1.2. The enhanced biostimulation provided potential for in-situ bioremediation utilizing MFC coupled with slow-released nitrate (i.e., nitrocellulose) treatment.


Assuntos
Fontes de Energia Bioelétrica , Hidrocarbonetos Policíclicos Aromáticos , Nitratos/metabolismo , Odorantes , Colódio , Preparações de Ação Retardada , Desnitrificação , Biodegradação Ambiental , Água , Sulfetos
6.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119488, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209718

RESUMO

Cerebral cavernous malformations (CCMs) are low-flow, hemorrhagic vascular lesions of the central nervous system of genetic origin, which can cause stroke-like symptoms and seizures. From the identification of CCM1, CCM2 and CCM3 as genes related to disease progression, molecular and cellular mechanisms for CCM pathogenesis have been established and the search for potential drugs to target CCM has begun. Broadly speaking, kinases are the major group signaling in CCM pathogenesis. These include the MEKK3/MEK5/ERK5 cascade, Rho/Rock signaling, CCM3/GCKIII signaling, PI3K/mTOR signaling, and others. Since the discovery of Rho/Rock in CCM pathogenesis, inhibitors for Rho signaling and subsequently other components in CCM signaling were discovered and applied in preclinical and clinical trials to ameliorate CCM progression. This review discusses the general aspects of CCM disease, kinase-mediated signaling in CCM pathogenesis and the current state of potential treatment options for CCM. It is suggested that kinase target drug development in the context of CCM might facilitate and meet the unmet requirement - a non-surgical option for CCM disease.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Transdução de Sinais/fisiologia , Sistema de Sinalização das MAP Quinases , Fosforilação
7.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36692953

RESUMO

Loss-of-function mutations in cerebral cavernous malformation (CCM) genes and gain-of-function mutation in the MAP3K3 gene encoding MEKK3 cause CCM. Deficiency of CCM proteins leads to the activation of MEKK3-KLF2/4 signaling, but it is not clear how this occurs. Here, we demonstrate that deletion of the CCM3 interacting kinases STK24/25 in endothelial cells causes defects in vascular patterning during development as well as CCM lesion formation during postnatal life. While permanent deletion of STK24/25 in endothelial cells caused developmental defects of the vascular system, inducible postnatal deletion of STK24/25 impaired angiogenesis in the retina and brain. More importantly, deletion of STK24/25 in neonatal mice led to the development of severe CCM lesions. At the molecular level, a hybrid protein consisting of the STK kinase domain and the MEKK3 interacting domain of CCM2 rescued the vascular phenotype caused by the loss of ccm gene function in zebrafish. Our study suggests that CCM2/3 proteins act as adapters to allow recruitment of STK24/25 to limit the constitutive MEKK3 activity, thus contributing to vessel stability. Loss of STK24/25 causes MEKK3 activation, leading to CCM lesion formation.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Animais , Camundongos , Células Endoteliais , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra
8.
J Hepatol ; 78(4): 754-769, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681161

RESUMO

BACKGROUND & AIMS: Cholangiocytes transit from quiescence to hyperproliferation during cystogenesis in polycystic liver disease (PLD), the severity of which displays prominent sex differences. Epigenetic regulation plays important roles in cell state transition. We aimed to investigate the sex-specific epigenetic basis of hepatic cystogenesis and to develop therapeutic strategies targeting epigenetic modifications for PLD treatment. METHODS: Normal and cystic primary cholangiocytes were isolated from wild-type and PLD mice of both sexes. Chromatin states were characterized by analyzing chromatin accessibility (ATAC sequencing) and multiple histone modifications (chromatin immunoprecipitation sequencing). Differential gene expression was determined by transcriptomic analysis (RNA sequencing). Pharmacologic inhibition of epigenetic modifying enzymes was undertaken in PLD model mice. RESULTS: Through genome-wide profiling of chromatin dynamics, we revealed a profound increase of global chromatin accessibility during cystogenesis in both male and female PLD cholangiocytes. We identified a switch from H3K9me3 to H3K9ac on cis-regulatory DNA elements of cyst-associated genes and showed that inhibition of H3K9ac acetyltransferase or H3K9me3 demethylase slowed cyst growth in male, but not female, PLD mice. In contrast, we found that H3K27ac was specifically increased in female PLD mice and that genes associated with H3K27ac-gained regions were enriched for cyst-related pathways. In an integrated epigenomic and transcriptomic analysis, we identified an estrogen receptor alpha-centered transcription factor network associated with the H3K27ac-regulated cystogenic gene expression program in female PLD mice. CONCLUSIONS: Our findings highlight the multi-layered sex-specific epigenetic dynamics underlying cholangiocyte state transition and reveal a potential epigenetic therapeutic strategy for male PLD patients. IMPACT AND IMPLICATIONS: In the present study, we elucidate a sex-specific epigenetic mechanism underlying the cholangiocyte state transition during hepatic cystogenesis and identify epigenetic drugs that effectively slow cyst growth in male PLD mice. These findings underscore the importance of sex difference in the pathogenesis of PLD and may guide researchers and physicians to develop sex-specific personalized approaches for PLD treatment.


Assuntos
Cistos , Hepatopatias , Feminino , Masculino , Camundongos , Animais , Epigênese Genética , Multiômica , Hepatopatias/genética , Hepatopatias/metabolismo , Cistos/metabolismo , Cromatina/genética
9.
iScience ; 25(12): 105642, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465134

RESUMO

Cerebral cavernous malformation (CCM) is caused by loss-of-function mutations in CCM1, CCM2, or CCM3 genes of endothelial cells. It is characterized by pericyte deficiency. However, the role of pericytes in CCMs is not yet clarified. We found pericytes in Cdh5Cre ERT2 ;Ccm1 fl/fl (Ccm1 ECKO ) mice had a high expression of PDGFRß. The inhibition of pericyte function by CP-673451 aggravated the CCM lesion development. RNA-sequencing analysis revealed the molecular traits of pericytes, such as highly expressed ECM-related genes, especially Fn1. Furthermore, KLF4 coupled with phosphorylated SMAD3 (pSMAD3) promoted the transcription of fibronectin in the pericytes of CCM lesions. RGDS peptide, an inhibitor of fibronectin, decreased the lesion area in the cerebella and retinas of Ccm1 ECKO mice. Also, human CCM lesions had abundant fibronectin deposition, and pSMAD3- and KLF4-positive pericytes. These findings indicate that pericytes are essential for CCM lesion development, and fibronectin intervention may provide a novel target for therapeutic intervention in such patients.

10.
J Cereb Blood Flow Metab ; 42(12): 2230-2244, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35686705

RESUMO

Cerebral cavernous malformation (CCM) is a brain vascular disease which can cause stroke, cerebral hemorrhage and neurological deficits in affected individuals. Loss-of-function mutations in three genes (CCM1, CCM2 and CCM3) cause CCM disease. Multiple mouse models for CCM disease have been developed although each of them are associated with various limitations. Here, we employed the Dre-Cre dual recombinase system to specifically delete Ccm genes in brain endothelial cells. In this new series of CCM mouse models, robust CCM lesions now develop in the cerebrum. The survival curve and lesion burden analysis revealed that Ccm2 deletion causes modest CCM lesions with a median life expectance of ∼10 months and Ccm3 gene deletion leads to the most severe CCM lesions with median life expectance of ∼2 months. The extended lifespan of these mutant mice enables their utility in behavioral analyses of neurologic deficits in adult mice, and allow the development of methods to quantify lesion burden in mice over time and also permit longitudinal drug testing in live animals.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Animais , Camundongos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Células Endoteliais/metabolismo , Deleção de Genes , Recombinases/genética , Recombinases/metabolismo , Modelos Animais de Doenças , Encéfalo/irrigação sanguínea
11.
Arterioscler Thromb Vasc Biol ; 42(6): 772-788, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35477278

RESUMO

BACKGROUND: Arteriogenesis plays a critical role in maintaining adequate tissue blood supply and is related to a favorable prognosis in arterial occlusive diseases. Strategies aimed at promoting arteriogenesis have thus far not been successful because the factors involved in arteriogenesis remain incompletely understood. Previous studies suggest that evolutionarily conserved KANK4 (KN motif and ankyrin repeat domain-containing proteins 4) might involve in vertebrate vessel development. However, how the KANK4 regulates vessel function remains unknown. We aim to determine the role of endothelial cell-specifically expressed KANK4 in arteriogenesis. METHODS: The role of KANK4 in regulating arteriogenesis was evaluated using Kank4-/- and KANK4iECOE mice. Molecular mechanisms underlying KANK4-potentiated arteriogenesis were investigated by employing RNA transcriptomic profiling and mass spectrometry analysis. RESULTS: By analyzing Kank4-EGFP reporter mice, we showed that KANK4 was specifically expressed in endothelial cells. In particular, KANK4 displayed a dynamic expression pattern from being ubiquitously expressed in all endothelial cells of the developing vasculature to being explicitly expressed in the endothelial cells of arterioles and arteries in matured vessels. In vitro microfluidic chip-based vascular morphology analysis and in vivo hindlimb ischemia assays using Kank4-/- and KANK4iECOE mice demonstrated that deletion of KANK4 impaired collateral artery growth and the recovery of blood perfusion, whereas KANK4 overexpression leads to increased vessel caliber and blood perfusion. Bulk RNA sequencing and Co-immunoprecipitation/mass spectrometry (Co-IP/MS) analysis identified that KANK4 promoted EC proliferation and collateral artery remodeling through coupling VEGFR2 (vascular endothelial growth factor receptor 2) to TALIN-1, which augmented the activation of the VEGFR2 signaling cascade. CONCLUSIONS: This study reveals a novel role for KANK4 in arteriogenesis in response to ischemia. KANK4 links VEGFR2 to TALIN-1, resulting in enhanced VEGFR2 activation and increased EC proliferation, highlighting that KANK4 is a potential therapeutic target for promoting arteriogenesis for arterial occlusive diseases.


Assuntos
Arteriopatias Oclusivas , Neovascularização Fisiológica , Animais , Arteriopatias Oclusivas/metabolismo , Circulação Colateral , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Membro Posterior/irrigação sanguínea , Isquemia , Camundongos , Camundongos Knockout , Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional , Talina , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Cell Mol Gastroenterol Hepatol ; 13(6): 1757-1783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35202885

RESUMO

BACKGROUND & AIMS: The liver has complex interconnecting blood vessel and biliary networks; however, how the vascular and biliary network form and regulate each other and liver function are not well-understood. We aimed to examine the role of Heg in mammalian liver development and functional maintenance. METHODS: Global (Heg-/-) or liver endothelial cell (EC)-specific deletion of Heg (Lyve1-Cre;Hegfl/fl ) mice were used to study the in vivo function of Heg in the liver. Carbon-ink anterograde and retrograde injection were used to visualize the 3-dimensional patterning of liver portal and biliary networks, respectively. RNA sequencing, histology, and molecular and biochemical assays were used to assess liver gene expression, protein distribution, liver injury response, and function. RESULTS: Heg deficiency in liver ECs led to a sparse liver vascular and biliary network. This network paucity does not compromise liver function under baseline conditions but did alter liver zonation. Molecular analysis revealed that endothelial Heg deficiency decreased expression of Wnt ligands/agonists including Wnt2, Wnt9b, and Rspo3 in ECs, which limits Axin2 mediated canonical Wnt signaling and the expression of cytochrome P450 enzymes in hepatocytes. Under chemical-induced stressed conditions, Heg-deficiency in liver ECs protected mice from drug-induced liver injuries. CONCLUSION: Our study found that endothelial Heg is essential for the 3-D patterning of the liver vascular and indirectly regulates biliary networks and proper liver zonation via its regulation of Wnt ligand production in liver endothelial cells. The endothelial Heg-initiated changes of the liver metabolic zonation and metabolic enzyme expression in hepatocytes was functionally relevant to xenobiotic metabolism and drug induced liver toxicity.


Assuntos
Proteínas Wnt , Via de Sinalização Wnt , Animais , Células Endoteliais , Fígado/patologia , Mamíferos/metabolismo , Camundongos , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
14.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34156031

RESUMO

PDCD10, also known as CCM3, is a gene found to be associated with the human disease cerebral cavernous malformations (CCMs). PDCD10 forms a complex with GCKIII kinases including STK24, STK25, and MST4. Studies in C. elegans and Drosophila have shown a pivotal role of the PDCD10-GCKIII complex in maintaining epithelial integrity. Here, we found that mice deficient of Pdcd10 or Stk24/25 in the kidney tubules developed polyuria and displayed increased water consumption. Although the expression levels of aquaporin genes were not decreased, the levels of total and phosphorylated aquaporin 2 (Aqp2) protein in the apical membrane of tubular epithelial cells were decreased in Pdcd10- and Stk24/25-deficient mice. This loss of Aqp2 was associated with increased expression and membrane targeting of Ezrin and phosphorylated Ezrin, Radixin, Moesin (p-ERM) proteins and impaired intracellular vesicle trafficking. Treatment with Erlotinib, a tyrosine kinase inhibitor promoting exocytosis and inhibiting endocytosis, normalized the expression level and membrane abundance of Aqp2 protein, and partially rescued the water reabsorption defect observed in the Pdcd10-deficient mice. Our current study identified the PDCD10-STK-ERM signaling pathway as a potentially novel pathway required for water balance control by regulating vesicle trafficking and protein abundance of AQP2 in the kidneys.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Aquaporina 2/metabolismo , Rim , Água/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Aquaporina 2/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/metabolismo , Rim/fisiologia , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
15.
Cardiovasc Eng Technol ; 12(5): 475-484, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34046845

RESUMO

PURPOSE: The neonatal mouse possesses a transient capacity for cardiac regeneration during the first few days of life. The regenerative response of neonatal mouse is primarily mediated by pre-existing cardiomyocyte (CM) proliferation, which has been identified as the primary source of myocardial regeneration. Postnatal 4-day-old (P4) mouse CMs appear to undergo a rapid transition from hyperplastic to hypertrophic growth and binucleation. By 7 days following birth this regenerative potential is lost which coincidently correspond with CM cell cycle arrest and binucleation. CCM2-like (Ccm2l) plays pivotal roles in cardiovascular development and cardiac growth, indicating a potential function in heart regeneration postnatally. The aim of this study was to determine the cardiac regeneration ability of P4 neonatal mouse using a novel and more reproducible injury model and to determine whether Ccm2l has any functional roles in heart repair following ischemic injury. METHODS: We performed a modified left anterior descending artery (LAD) ligation procedure on P4 mice to examine cardiac regenerative responses at different time points. Additionally, we generated an endothelial-specific Ccm2l gain-of-function transgenic mouse to determine the role of Ccm2l in neonatal cardiac regeneration. RESULTS: We found that the P4 mouse heart harbor a robust regenerative response after injury that was through the proliferation of pre-existing CMs but cardiac hypertrophy and subsequent remodeling was still evident 60 days after LAD ligation. Furthermore, we show that endothelial-specific overexpression of Ccm2l does not promote CM proliferation and heart repair after LAD ligation. CONCLUSION: The neonatal heart at P4 harbors a robust but incomplete capacity for cardiac regeneration. Endothelial overexpression of Ccm2l has no effect on cardiac regeneration.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Animais Recém-Nascidos , Ciclo Celular , Coração , Camundongos , Regeneração
17.
J Exp Med ; 217(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32648916

RESUMO

Cerebral cavernous malformations (CCMs) form following loss of the CCM protein complex in brain endothelial cells due to increased endothelial MEKK3 signaling and KLF2/4 transcription factor expression, but the downstream events that drive lesion formation remain undefined. Recent studies have revealed that CCM lesions expand by incorporating neighboring wild-type endothelial cells, indicative of a cell nonautonomous mechanism. Here we find that endothelial loss of ADAMTS5 reduced CCM formation in the neonatal mouse model. Conversely, endothelial gain of ADAMTS5 conferred early lesion genesis in the absence of increased KLF2/4 expression and synergized with KRIT1 loss of function to create large malformations. Lowering versican expression reduced CCM burden, indicating that versican is the relevant ADAMTS5 substrate and that lesion formation requires proteolysis but not loss of this extracellular matrix protein. These findings identify endothelial secretion of ADAMTS5 and cleavage of versican as downstream mechanisms of CCM pathogenesis and provide a basis for the participation of wild-type endothelial cells in lesion formation.


Assuntos
Proteína ADAMTS5/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Versicanas/metabolismo , Proteína ADAMTS1/metabolismo , Proteína ADAMTS4/metabolismo , Animais , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Feminino , Estudos de Associação Genética , Hemangioma Cavernoso do Sistema Nervoso Central/embriologia , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteólise , Substância Branca/metabolismo
18.
PLoS Biol ; 18(6): e3000734, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502201

RESUMO

Cerebral cavernous malformations (CCMs) are vascular lesions predominantly developing in the central nervous system (CNS), with no effective treatments other than surgery. Loss-of-function mutation in CCM1/krev interaction trapped 1 (KRIT1), CCM2, or CCM3/programmed cell death 10 (PDCD10) causes lesions that are characterized by abnormal vascular integrity. Vascular endothelial cadherin (VE-cadherin), a major regulator of endothelial cell (EC) junctional integrity is strongly disorganized in ECs lining the CCM lesions. We report here that microRNA-27a (miR-27a), a negative regulator of VE-cadherin, is elevated in ECs isolated from mouse brains developing early CCM lesions and in cultured ECs with CCM1 or CCM2 depletion. Furthermore, we show miR-27a acts downstream of kruppel-like factor (KLF)2 and KLF4, two known key transcription factors involved in CCM lesion development. Using CD5-2 (a target site blocker [TSB]) to prevent the miR-27a/VE-cadherin mRNA interaction, we present a potential therapy to increase VE-cadherin expression and thus rescue the abnormal vascular integrity. In CCM1- or CCM2-depleted ECs, CD5-2 reduces monolayer permeability, and in Ccm1 heterozygous mice, it restores dermal vessel barrier function. In a neonatal mouse model of CCM disease, CD5-2 normalizes vasculature and reduces vascular leakage in the lesions, inhibits the development of large lesions, and significantly reduces the size of established lesions in the hindbrain. Furthermore, CD5-2 limits the accumulation of inflammatory cells in the lesion area. Our work has established that VE-cadherin is a potential therapeutic target for normalization of the vasculature and highlights that targeting miR-27a/VE-cadherin interaction by CD5-2 is a potential novel therapy for the devastating disease, CCM.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , MicroRNAs/metabolismo , Animais , Regulação para Baixo/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Rombencéfalo/irrigação sanguínea , Rombencéfalo/patologia , Regulação para Cima/genética , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Methods Mol Biol ; 2152: 253-258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524557

RESUMO

Mutations in the CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation (CCM) in humans. Neonatal mouse models of CCM disease have been established by deleting any one of the Ccm genes. These mouse models provide invaluable in vivo disease model to investigate molecular mechanisms and therapeutic approaches for the disease. Here, we describe detailed methodology to generate CCM disease in mouse models (Ccm1 and Ccm2-deficient) using inducible Cre/loxP recombination strategy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Recombinação Homóloga , Integrases , Camundongos Transgênicos , Alelos , Animais , Modelos Animais de Doenças , Genótipo , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Camundongos , Camundongos Knockout , Fenótipo
20.
Biosci Biotechnol Biochem ; 84(4): 774-779, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31829093

RESUMO

Atherosclerosis is a main reason for peripheral vascular disease. The present study aims to investigate the effects of macrophage foam cells which is an initial part in atherosclerosis. RAW 264.7 were treated with 80 µg/mL oxidized low-density lipoproteins (ox-LDL) to mimic atherosclerosis in vitro. Orientin, a flavonoid from plants, inhibited ox-LDL induced TNFα, IL-6, IL-1ß expression increase. In addition, Orientin also can inhibit the emergence of ox-LDL-induced lipid droplets. The scavenger receptor CD 36 of ox-LDL was significantly downregulated after the treatment of orientin. Inhibition of ROS generation and increasing of eNOS expression by Orientin treatment was used to show the alteration of oxidative stress. Moreover, the expression levels of Angiopoietin-like 2 (angptl2) and NF-κB were significantly upregulated after cells induced by ox-LDL, whereas orientin significantly reversed the effects of ox-LDL. Orientin inhibited ox-LDL-induced inflammation and oxidative stress, and CD36 may be the key regulator during Orientin action.


Assuntos
Aterosclerose/prevenção & controle , Flavonoides/farmacologia , Glucosídeos/farmacologia , Inflamação/prevenção & controle , Lipoproteínas LDL/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Aterosclerose/metabolismo , Antígenos CD36/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Inflamação/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA