Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931089

RESUMO

Cadmium (Cd) pollution has been rapidly increasing due to the global rise in industries. Cd not only harms the ecological environment but also endangers human health through the food chain and drinking water. Therefore, the remediation of Cd-polluted soil is an imminent issue. In this work, ryegrass and a strain of Cd-tolerant bacterium were used to investigate the impact of inoculated bacteria on the physiology and biochemistry of ryegrass and the Cd enrichment of ryegrass in soil contaminated with different concentrations of Cd (4 and 20 mg/kg). The results showed that chlorophyll content increased by 24.7% and 41.0%, while peroxidase activity decreased by 56.7% and 3.9%. In addition, ascorbic acid content increased by 16.7% and 6.3%, whereas glutathione content decreased by 54.2% and 6.9%. The total Cd concentration in ryegrass increased by 21.5% and 10.3%, and the soil's residual Cd decreased by 86.0% and 44.1%. Thus, the inoculation of Cd-tolerant bacteria can improve the antioxidant stress ability of ryegrass in Cd-contaminated soil and change the soil's Cd form. As a result, the Cd enrichment in under-ground and above-ground parts of ryegrass, as well as the biomass of ryegrass, is increased, and the ability of ryegrass to remediate Cd-contaminated soil is significantly improved.

2.
Curr Microbiol ; 81(8): 228, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890167

RESUMO

Soil nutrient deficiency has become a key factor limiting crop growth. Plant growth-promoting rhizobacteria (PGPR) are vital in resisting abiotic stress. In this study, we investigated the effects of inoculation with Bacillus amyloliquefaciens JB20221020 on the physiology, biochemistry, rhizosphere microorganisms, and metabolism of lettuce under nutrient stress. Pot experiments showed that inoculation with B. amyloliquefaciens JB20221020 significantly promoted lettuce growth under nutrient deficiency. At the same time, the activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase and the content of proline increased, and the content of Malondialdehyde decreased in the lettuce inoculated with B. amyloliquefaciens JB20221020. Inoculation with B. amyloliquefaciens JB20221020 altered the microbial community of the rhizosphere and increased the relative abundances of Myxococcales, Deltaproteobacteria, Proteobacteria, Devosia, and Verrucomicrobia. Inoculation also altered the rhizosphere metabolism under nutrient deficiency. The folate metabolism pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. This study explored the interaction between plants and microorganisms under nutrient deficiency, further explained the critical role of rhizosphere microorganisms in the process of plant nutrient stress, and provided a theoretical basis for the use of microorganisms to improve plant resistance.


Assuntos
Bacillus amyloliquefaciens , Lactuca , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiologia , Lactuca/microbiologia , Lactuca/crescimento & desenvolvimento , Nutrientes/metabolismo , Microbiota , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Solo/química
3.
Appl Microbiol Biotechnol ; 108(1): 313, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683244

RESUMO

To avoid the unreasonable use of chemical fertilizer, an environmentally friendly means of improving soil fertility is required. This study explored the role of the plant growth-promoting rhizosphere bacteria (PGPR) strain Bacillus velezensis SAAS-63 in improving nutrient stress in lettuce. Compared with no inoculation, B. velezensis SAAS-63 inoculants exhibited significantly increased fresh weight, root length, and shoot height under nutrient deficiency, as well as improved antioxidant activities and proline contents. The exogenous addition of B. velezensis SAAS-63 also significantly increased the accumulation of macroelements and micronutrients in lettuce. To elucidate the resistance mechanisms induced by B. velezensis SAAS-63 under nutrient stress, high-throughput sequencing and multi-omics analysis were performed. Inoculation with B. velezensis SAAS-63 altered the microbial community of the rhizosphere and increased the relative abundances of Streptomyces, Actinoallomurus, Verrucomicrobia, and Chloroflexi. It is worth noting that the inoculant SAAS-63 can affect plant rhizosphere metabolism. The inoculant changed the metabolic flow of phenylpropanoid metabolic pathway under nutrient deficiency and promoted phenylalanine to participate more in the synthesis of lignin precursors and coumarin substances by inhibiting the synthesis of flavone and isoflavone, thus improving plant resistance. This study showed that the addition of inoculant SAAS-63 could help plants recruit microorganisms to decompose and utilize trehalose and re-established the carbon metabolism of the plant rhizosphere. Additionally, microbes were found to be closely related to the accumulation of metabolites based on correlation analysis. The results indicated that the addition of PGPRs has an important role in regulating soil rhizosphere microbes and metabolism, providing valuable information for understanding how PGPRs affect complex biological processes and enhance plant adaptation to nutrient deficiency. KEY POINTS: • Inoculation with SAAS-63 significantly promoted plant growth under nutrient-deficient conditions • Inoculation with SAAS-63 affected rhizosphere microbial diversity and community structure • Inoculation with SAAS-63 affected plant rhizosphere metabolism and induced plants to synthesize substances that resist stress.


Assuntos
Bacillus , Lactuca , Nutrientes , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Bacillus/metabolismo , Bacillus/genética , Lactuca/microbiologia , Lactuca/crescimento & desenvolvimento , Nutrientes/metabolismo , Raízes de Plantas/microbiologia , Microbiota , Multiômica
4.
Ecotoxicol Environ Saf ; 271: 115957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219617

RESUMO

The perennial ryegrass Lolium perenne can be used in conjunction with cadmium (Cd)-tolerant bacteria such as Cdq4-2 (Enterococcus spp.) for bioremediation of Cd-contaminated soil. In this study, a theoretical basis was provided to increase the efficiency of L. perenne remediation of Cd-contaminated soil using microorganisms to maintain the stability of the soil microbiome. The experimental design involved three treatment groups: CK (soil without Cd addition) as the control, 20 mg·kg-1 Cd-contaminated soil, and 20 mg·kg-1 Cd-contaminated soil + Cdq4-2, all planted with L. perenne. The soil was collected on day 60 to determine the soil microbial activity and bacterial community structure and to analyze the correlation between soil variables, the bacterial community, available Cd content in the soil, Cd accumulation, and L. perenne growth. The soil microbial activity and bacterial community diversity decreased under Cd stress, and the soil microbial community composition was changed; while inoculation with Cdq4-2 significantly increased soil basal respiration and the activities of urease, invertase, and fluorescein diacetate (FDA) hydrolase by 83.65%, 79.72%, 19.88%, and 96.15% respectively; and the stability of the community structure was also enhanced. The Actinobacteriota biomass, the amount of available Cd, and the above- and belowground Cd content of L. perenne were significantly negatively correlated with the total phosphorus, total potassium, and pH. The activity of urease, invertase, and FDA hydrolase were significantly positively correlated with the biomasses of Acidobacteriota and L. perenne and significantly negatively correlated with the Chloroflexi biomass. Further, the available soil Cd content and the above- and belowground Cd levels of L. perenne were significantly positively correlated with the Actinobacteriota biomass and significantly negatively correlated with the Gemmatimonadetes biomass. Overall, inoculating Cd-tolerant bacteria improved the microbial activity, diversity, and abundance, and changed the microbial community composition, facilitating the remediation of Cd-contaminated soil by L. perenne.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Biodegradação Ambiental , Urease , beta-Frutofuranosidase , Bactérias , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
5.
Ecotoxicol Environ Saf ; 249: 114407, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508786

RESUMO

Modification of biochar, such as impregnation with minerals, can improve biochar's efficacy to mitigate heavy metal toxicity in plants. Biochar amendments can alter plant rhizosphere microbiome, which has profound effects on plant growth and fitness. Here, we tested whether rhizosphere microbiome is involved in the ability of silicon (Si)-modified biochar to mitigate cadmium toxicity in tomato (Solanum lycopersicum L.). We demonstrated that Si modification altered biochar's physico-chemical properties and enhanced its ability to mitigate cadmium toxicity in tomato. Particularly, the Si-modified biochar contained higher content of Si and increased plant-available Si content in the soil. The rhizosphere microbiome transplant experiment showed that changes in rhizosphere microbiome contributed to the mitigation of cadmium toxicity by biochar amendments. The raw biochar and Si-modified biochar differently altered tomato rhizosphere bacterial community composition. Both biochars, especially the Si-modified biochar, promoted specific bacterial taxa (e.g., Sphingomonas, Lysobacter and Pseudomonas spp.). Subsequent culturing found these promoted bacteria could mitigate cadmium toxicity in tomato. Moreover, both biochars stimulated tomato to recruit plant-beneficial bacteria with Si-modified biochar having stronger stimulatory effects, indicating that the positive effects of biochar on plant-beneficial bacteria was partially mediated via the host plant. Overall, Si modification enhanced biochar's ability to mitigate cadmium toxicity, which was linked to the stimulatory effects on plant-beneficial bacteria.


Assuntos
Solanum lycopersicum , Cádmio/toxicidade , Cádmio/análise , Silício/farmacologia , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Bactérias , Rizosfera , Solo/química
6.
Front Microbiol ; 13: 954489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046026

RESUMO

Chemical fertilizer reduction combined with novel and green agricultural inputs has become an important practice to improve microecological health in agricultural production. Given the close linkages between rhizosphere processes and plant nutrition and productivity, understanding how fertilization impacts this critical zone is highly important for optimizing plant-soil interactions and crop fitness for agricultural sustainability. Here, by using a pot experimental system, we demonstrated that nitrogen fertilizer reduction and microbial agent application promoted plant fitness and altered the microbial community structure in the rhizosphere soil with the following treatments: no fertilization, CK; conventional chemical fertilizer, CF; 30% reduced nitrogen fertilizer, N; 30% reduced nitrogen fertilizer with pure γ-PGA, PGA; 30% reduced nitrogen fertilizer with Bacillus subtilis A-5, A5; 30% reduced nitrogen fertilizer with γ-PGA fermentation broth, FJY. The PGA, A5, and FJY treatments all significantly promoted crop growth, and the FJY treatment showed the strongest positive effect on Chinese cabbage yield (26,385.09 kg/hm2) (P < 0.05). Microbial agents affected the α diversity of the rhizosphere bacterial community; the addition of B. subtilis A-5 (A5 and FJY treatments) significantly affected rhizospheric bacterial community structure. Urease activity and soil pH were the key factors affecting bacterial community structure and composition. The FJY treatment seemed to influence the relative abundances of important bacterial taxa related to metabolite degradation, predation, and nitrogen cycling. This discovery provides insight into the mechanism underlying the effects of microbial agent inputs on rhizosphere microbial community assembly and highlights a promising direction for the manipulation of the rhizosphere microbiome to yield beneficial outcomes.

7.
Chemosphere ; 308(Pt 2): 136315, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087728

RESUMO

Due to the use of agricultural film, the pollution of phthalate esters (PAEs) in plastic-shed soils has attracted increasing attention. In this study, we used watermelon as a planting system and investigated the effects of organic fertilizer and chemical fertilizer application on the degradation of PAEs by evaluating soil nutrients and soil bacterial communities in plastic-shed soil. The dibutyl phthalate (DBP) concentration in the organic fertilizer soil was only 58.2% in the zero-fertilization control (CK) soil, but the concentrations of monohexyl phthalate (MEHP) and mono-n-butyl ester (MBP), the metabolites of PAEs, were found to be higher. The concentration of MBP is ten times that of DBP. The results showed that fertilization, especially the application of organic fertilizers, had a significant effect on the degradation of PAEs. There were specific biomarkers in different fertilization treatments. Among the microbiome community, Planifilum had the highest relative abundance in the organic fertilizer (OF) soil, and the highest proportion of Thermodesulfovibrionia was detected in the chemical fertilizer (CF) soil. These biomarkers were significantly correlated with PAEs and their metabolites. The relative abundance of Thermomonosporaceae was significantly positively correlated with DBP. Planifilum and Thermaerobacter, which significantly increased in organic fertilizer soil, showed a significant negative correlation with DBP and a significant positive correlation with MBP. The relative abundances of Planifilum and Geobacillus were elevated in the OF soil and may be able to co-metabolize soil nitrogen and PAEs. PAEs and their metabolites in soils had significant effects on soil microbes, as did the soil nutrients including available phosphorus (AP), alkali-hydrolysable nitrogen (Alkali-N), and organic matter (OM). Our research provides scientific support for the use of fertilizers to reduce PAE contamination but also warns of the potential risks of PAE metabolites.


Assuntos
Microbiota , Poluentes do Solo , Álcalis , Bactérias/metabolismo , Dibutilftalato/metabolismo , Ésteres , Fertilizantes , Nitrogênio , Fósforo , Ácidos Ftálicos , Plásticos , Solo , Poluentes do Solo/análise
8.
Sci Total Environ ; 851(Pt 1): 158075, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985593

RESUMO

Vermiremediation, which use earthworms to remove contaminants from soil, has been proven to be an alternative, low-cost technology. However, the effects of earthworm activity, especially the degraders in earthworm intestines, on the fate of sulfamethoxazole (SMX), and the effects of intestinal bacteria on degrading bacteria in soil are unclear. In this study, the effects of earthworms on the fate of SMX and related antibiotic resistance genes (ARGs) were investigated. Special attention was paid to the impact of earthworms on SMX degradation efficiency, degradation products, related ARGs, and degraders in both soil and earthworm intestines; the effect of intestinal bacteria on soil bacteria associated with SMX was also studied. Earthworms significantly accelerated SMX degradation by both intestinal detoxification and the stimulation of indigenous soil bacteria. Compared with the treatment without earthworms, the treatment with earthworms reduced SMX residues by 25.1 %, 49.2 %, 35.7 %, 34.2 %, and 35.7 % on the 10th, 20th, 30th, 60th, and 90th days, respectively. Compared with those in soil (treated with earthworms), the SMX residues in wormcasts were further reduced by 12.2-29.0 % from the 2nd to the 20th day, producing some unique anaerobic degradation products that were distinct from those in the soil. In earthworm intestines, SMX degradation was enhanced by bacteria of the genera Microvirga, Sphingomonas, Methylobacterium, Bacillus, and Tumebacillus. All of these bacteria (except Bacillus spp.) entered and colonised the soil with wormcasts, further promoting SMX degradation. Additionally, earthworms removed a significant number of ARGs by increasing the fraction of potential SMX degraders and inhibiting the potential hosts of ARGs and int1. This study demonstrated that earthworms could remediate SMX-contaminated soil by enhancing the removal of SMX and ARGs.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/metabolismo , Resistência Microbiana a Medicamentos , Intestinos , Oligoquetos/fisiologia , Solo/química , Poluentes do Solo/análise , Sulfametoxazol/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-35805288

RESUMO

Bacillus subtilis A-5 has the capabilities of high-molecular-weight γ-PGA production, antagonism to plant pathogenic fungi, and salt/alkaline tolerance. This multifunctional bacterium has great potential for enhancing soil fertility and plant security in agricultural ecosystem. The genome size of B. subtilis A-5 was 4,190,775 bp, containing 1 Chr and 2 plasmids (pA and pB) with 43.37% guanine-cytosine content and 4605 coding sequences. The γ-PGA synthase gene cluster was predicted to consist of pgsBCA and factor (pgsE). The γ-PGA-degrading enzymes were mainly pgdS, GGT, and cwlO. Nine gene clusters producing secondary metabolite substances, namely, four unknown function gene clusters and five antibiotic synthesis gene clusters (surfactin, fengycin, bacillibactin, subtilosin_A, and bacilysin), were predicted in the genome of B. subtilis A-5 using antiSMASH. In addition, B. subtilis A-5 contained genes related to carbohydrate and protein decomposition, proline synthesis, pyruvate kinase, and stress-resistant proteins. This affords significant insights into the survival and application of B. subtilis A-5 in adverse agricultural environmental conditions.


Assuntos
Bacillus subtilis , Ácido Poliglutâmico , Bacillus subtilis/genética , Ecossistema , Plasmídeos , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/metabolismo
10.
Sci Total Environ ; 806(Pt 1): 150525, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582855

RESUMO

Straw return could provide a natural available carbon source for the soil microorganisms, which might affect the environmental behaviours of organic pollutants. In this study, microcosm system was constructed to investigate the effect of rice straw return on the fate of sulfamethoxazole (SMX) and related antibiotic resistance genes (ARGs). The results showed that straw return (1% of soil dry mass) could accelerate the degradation of SMX via co-metabolism. In the treatment group with rice straw, SMX was rapidly decomposed into small molecular compounds (e.g., (Z)-1-amino-3-oxobut-1-en-1-aminium and benzenesulfinic acid) within the first six days, and SMX was undetectable after 60 days; while for the SMX group without rice straw, 1.3 mg kg-1 of SMX still remained at the 60th day. Straw return could enhance the relative abundances of Proteobacteria involved in SMX degradation, including Microvirga and Ramlibacter, which co-metabolized SMX via the degradation pathways of mineralizable components and aromatic compound. Furthermore, straw return significantly eliminated the ARGs. After 60 days, the int1 and sul1 abundances of the treatment group with rice straw were less than one-tenth of the SMX group without rice straw. The redundancy and network analysis of bacterial community and environmental factors showed that dissolved organic carbon and bacteria belonged to Proteobacteria and Actinobacteria might play positive roles in eliminating ARGs. Our results demonstrate that straw return could promote the simultaneous elimination of SMX and corresponding ARGs, which provides a promising approach to effectively treat antibiotics and ARGs in the farmland.


Assuntos
Oryza , Sulfametoxazol , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Oryza/genética , Solo
11.
Front Microbiol ; 13: 1069554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590424

RESUMO

Introduction: Soil ammonia oxidation, which acts as the first and rate-limiting step of nitrification, is driven by ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and complete ammonia oxidizer (comammox, amoA gene of clade-A and clade-B). Straw returning, widely used ecological technology in China, is an effective measure for promoting straw decomposition and soil nutrient cycling when combined with earthworm addition. However, the effects of straw returning combined with earthworm addition on soil ammonia oxidizers remain poorly understood. Methods: A 2-year plot experiment was conducted with 5 treatments: no fertilizer (CK); regular fertilization (RT); straw returning (SR); earthworm addition (W); straw returning + earthworm addition (SRW). The AOA, AOB, comammox clade-A and clade-B community microbial diversities and structures were investigated by high-throughput sequencing. Results: The results showed that (1) compared to RT treatment, W, SR, and SRW treatments all significantly increased the richness of AOA and comammox clade-A and clade-B (p < 0.05), and the richness of AOB was only significantly promoted by SRW treatment (p < 0.05). However, only SRW had a higher comammox clade-B diversity index than RT. (2) The ammonia oxidizer community structures were altered by both straw returning and earthworm addition. Soil NH4 +-N was the critical environmental driver for altering the ammonia oxidizer community structure. (3) Compared with RT treatment, the soil potential nitrification rate (PNR) of W and SRW treatments increased by 1.19 and 1.20 times, respectively. The PNR was significantly positively correlated with AOB abundance (path coefficient = 0.712, p < 0.05) and negatively correlated with clade-B abundance (path coefficient = -0.106, p < 0.05). Discussion: This study provides scientific support for the application of straw returning combined with earthworm addition to improve soil nitrification with respect to soil ammonia-oxidizing microorganisms.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36612602

RESUMO

The current fertilizer recommendations for melon plantation have many limitations and exhibit deficiencies regarding future development. Therefore, in this study, the optimal quantities of fertilizer, in terms of the effects of single factors and interaction effects, are studied. There were significant interaction effects between N and P, N and K, P and K; the contents of soluble protein, vitamin C (Vc), and soluble sugar in melon could be improved using the optimal fertilization ratios. The optimal ratio of N:P:K was 2.33:1:3.85, with the amounts of N, P2O5, and K2O, respectively, being 157.5, 67.58, and 260.38 kg/hm2, yielding 8.73 g/kg of soluble protein in melon. The optimal ratio of N:P:K was 2.03:1:3.36, with amounts of N, P2O5, and K2O being 157.50, 77.40, and 260.38 kg/hm2, respectively, yielding 25.32 g/kg Vc content in melon. Finally, the optimal ratio of N:P:K was 1.53:1:3.36, with the amounts of N, P2O5, and K2O being 118.07, 77.40, respectively, and 260.38 kg/hm2, yielding 13.34% soluble sugar content in melon.


Assuntos
Ácido Ascórbico , Cucurbitaceae , Açúcares , Fósforo/metabolismo , Nitrogênio/metabolismo , Potássio/metabolismo , Fertilizantes , Vitaminas , Modelos Teóricos
13.
Front Microbiol ; 12: 655515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526972

RESUMO

The application of biogas slurry and chemical fertilizer in paddy fields can be a practical method to reduce the environmental risk and utilize the nutrients of biogas slurry. The responses of bacterial and fungal communities to the application of biogas slurry and chemical fertilizer are important reflections of the quality of the ecological environment. In this study, based on a 3-year field experiment with different ratios of biogas slurry and chemical fertilizer (applying the same pure nitrogen amount), the Illumina MiSeq platform was used to investigate the bacterial and fungal community diversity and composition in paddy soil. Our results revealed that compared with the observations under regular chemical fertilization, on the basis of stable paddy yield, the application of biogas slurry combined with chemical fertilizer significantly enhanced the soil nutrient availability and bacterial community diversity and reduced the fungal community diversity. Dissolved organic carbon (DOC), DOC/SOC (soil organic carbon), available nitrogen (AN) and available phosphorus (AP) were positively correlated with the bacterial community diversity, but no soil property was significantly associated with the fungal community. The bacterial community was primarily driven by the application of biogas slurry combined with chemical fertilizer (40.78%), while the fungal community was almost equally affected by the addition of pure biogas slurry, chemical fertilizer and biogas slurry combined with chemical fertilizer (25.65-28.72%). Biogas slurry combined with chemical fertilizer significantly enriched Proteobacteria, Acidobacteria, Planctomycetes, Rokubacteria, and Ascomycota and depleted Chloroflexi, Bacteroidetes, Crenarchaeota, Basidiomycota, and Glomeromycota. The observation of the alteration of some bacteria- and fungus-specific taxa provides insights for the proper application of biogas slurry combined with chemical fertilizer, which has the potential to promote crop growth and inhibit pathogens.

14.
Sci Rep ; 11(1): 10813, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031461

RESUMO

The diversity and community structure of soil fungi play an important role in crop production and ecosystem balance, especially in paddy-upland vegetable field systems. High-throughput sequencing was used to study changes in the soil fungal community structure and function in paddy-upland vegetable field systems. The results showed that compared with traditional planting, the diversity and community structure of soil fungi were changed by the combination of flooding and drought, the Shannon index increased by 11.07%, and the proportion of the dominant species, Mortierella, decreased by 22.74%. Soil available nitrogen, total phosphorus, available phosphorus, total nitrogen and organic matter played a leading role in the initial stage of the experiment, while the dominant factor changed to total potassium 3 years later and then to soil pH and water content 6 years later. FUNGuild analysis showed that the proportion of three independent trophic modes of soil fungi were increased by the combined flooded-drought model, and there were multiple interaction factors, For example, nutrient supply, pH and planting pattern. This study showed that soil fertility, crop yield and economic benefits were better than the traditional model after three years of planting and breeding. The longer the time, the better the effect.

15.
Sci Rep ; 11(1): 10855, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035399

RESUMO

The high productivity and efficient nutrient utilization in rice-fish integrated farming system are well reported. However, the characteristics of soil bacterial communities and their relationship with soil nutrient availability in rice-fish field remain unclear. In this study, we selected three paddy fields, including a rice monoculture field and two rice-fish fields with different planting years, to investigate the soil bacterial community composition with Illumina MiSeq sequencing technology. The results indicated that the soil properties were significantly different among different rice farming systems. The soil bacterial community composition in the rice-fish field was significantly different from that in the rice monoculture field. Five of the top 15 phyla were observed with significant differences and Nitrospirae was the most significant one. However, no taxa observed with significance between the rice planting area and aquaculture area no matter in the 1st or 5th year of rice-fish field. RDA analysis showed that the soil bacterial community differentiation in the 5th year of rice-fish field was positively correlated with soil properties, such as AN and OM contents, EC and pH value. Although the rice yields in rice-fish field decreased, the net economic benefit of the rice-fish system enhanced obviously due to the high value of aquaculture animals.


Assuntos
Bactérias , Fazendas , Peixes , Microbiota , Oryza , Microbiologia do Solo , Agricultura , Animais , Biodiversidade , Metagenoma , Metagenômica/métodos
16.
Sci Total Environ ; 778: 146021, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030362

RESUMO

Sustainable intensive cropping systems have been implemented for three decades in suburban agricultural districts of Shanghai, China. These human-managed soils have been developed from paleosol or alluvial soils across different regions. However, little is known about the geographical distribution patterns of microbes and microbial community assembly in the sustainable intensive soils after decades of anthropogenic disturbances. Here, we investigated the impact of local geochemical properties and geographic distance on stochastic/deterministic microbial community assembly processes using high-throughput sequencing and phylogenetic null modeling analysis. Our results showed that soil pH was the most important environmental factor determining bacterial and fungal community structure. Importantly, only soil organic matter was positively correlated with fungal α-diversity, suggesting the efficient use of carbon substrates in sustainable agricultural systems, compensating for the lack of chemical fertilization and reduced tillage in these systems. Both bacterial and fungal communities had robust distance-decay patterns, but the rate of turnover of bacterial taxa was faster than that of fungi. Variation in bacterial and fungal communities was mostly attributed to the simultaneous effects of environmental variables and spatial factors. We also mapped the spatial distributions of the dominant bacterial and fungal taxa across the sustainable agricultural fields, making it possible to forecast the responses of agricultural ecosystems to anthropogenic disturbance. Based on the patterns of the ß-nearest taxon index, this study demonstrated that stochastic processes shaped substantial bacterial and fungal community variation in sustainable intensive agricultural soils of the Shanghai suburbs. This variation may be attributed to the increasing microbial dispersal caused by hydrological connectivity in the agricultural fields or the release from environmental stress and weakened environmental filtering across the suitable pH range preferable for most soil microbes. These results unveil assembly mechanisms of soil microbial community after several decades of sustainable intensive management, and contribute to understand the role of microbes in ecosystems in establishing a functional equilibrium which may enable sustainability to be preserved.


Assuntos
Micobioma , Solo , China , Humanos , Filogenia , Microbiologia do Solo , Processos Estocásticos
17.
J Hazard Mater ; 417: 126001, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992008

RESUMO

Metabolomic responses of earthworms to neonicotinoids are important for understanding their molecular-level toxicity and assessing their ecological risks, but little is known until now. We investigated impact of imidacloprid (IMI, 52.6 ng/g) and dinotefuran (DIN, 52.5 ng/g) on Eisenia fetida metabolomics under single- and dual-compound exposure scenarios for one to four weeks. Dissimilar metabolites and anti-stress strategies were found for different neonicotinoids and exposure scenarios. Specifically, IMI exposure first increased myo-inositol and UDP-glucuronate associated with transmembrane absorption and transformation to IMI-urea, and then increased glutathione and fourteen amino acids (TCA cycle precursors) to resist stress and replenish energy. In contrast, worms exposed to DIN first prepared TCA cycle intermediates from glucosamine-6-phosphate and amino acids, suppressed urea cycle and DIN transformation, and then alleviated oxidative stress by increasing carnosine, nicotinate-D-ribonucleotide and nicotinamide-ß-riboside. Dual exposure increased four eicosanoids by 1.6-1.9-fold, possibly associated with membrane lipid peroxidation; the amino acids consumed to balance the energy metabolism exhibited a wave-like pattern. This study first systematically revealed the compound/time/exposure scenario- dependent effects of trace neonicotinoids on earthworm metabolomics and advanced the understanding of their action modes. Neonicotinoid transformation was closely related to worms' metabolic profiles, providing important insights in contaminant fate in soil ecosystems.


Assuntos
Inseticidas , Oligoquetos , Poluentes do Solo , Animais , Ecossistema , Guanidinas , Inseticidas/análise , Inseticidas/toxicidade , Metabolômica , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
18.
PeerJ ; 8: e9870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995083

RESUMO

BACKGROUND: To promote straw degradation, we inoculated returned farmland straw with earthworms (Pheretima guillelmi). Increasing the number of earthworms may generally alter soil organic carbon (SOC) dynamics and the biological activity of agricultural soils. METHODS: We performed soil mesocosm experiments with and without earthworms to assess the decomposition and microbial mineralization of returned straw and soil enzyme activity across different time periods. RESULTS: When earthworms were present in soil, the surface residues were completely consumed during the first four weeks, but when earthworms were absent, most of the residues remained on the soil surface after 18 weeks. On day 28, the SOC content was significantly higher in the treatment where both earthworms and residue had been added. The SOC content was lower in the treatment where earthworms but no residue had been added. The organic carbon content in water-stable macroaggregates showed the same trend. During the first 14 weeks, the soil basal respiration was highest in the treatments with both residues and earthworms. From weeks 14 to 18, basal respiration was highest in the treatments with residues but without earthworms. We found a significant positive correlation between soil basal respiration and soil dissolved organic carbon content. Earthworms increased the activity of protease, invertase, urease and alkaline phosphatase enzymes, but decreased ß-cellobiohydrolase, ß-glucosidase and xylosidase activity, as well as significantly reducing ergosterol content. CONCLUSION: The primary decomposition of exogenous rice residues was mainly performed by earthworms. Over a short period of time, they converted plant carbon into soil carbon and increased SOC. The earthworms played a key role in carbon conversion and stabilization. In the absence of exogenous residues, earthworm activity accelerated the decomposition of original organic carbon in the soil, reduced SOC, and promoted carbon mineralization.

19.
Environ Pollut ; 266(Pt 2): 115112, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32634694

RESUMO

Di(2-ethylhexyl) phthalate (DEHP), the most extensively used plasticizer in plastic formulations, is categorized as a priority environmental contaminant with carcinogenic, teratogenic, and mutagenic toxicities. Many isolated microorganisms exhibit outstanding performance as pure cultures in the laboratory but are unable to cope with harsh environmental conditions in the field. In the present study, a microbial consortium (CM9) with efficient functionality was isolated from contaminated farmland soil. CM9 could consistently degrade 94.85% and 100.00% of DEHP (1000 mg/L) within 24 h and 72 h, respectively, a higher efficiency than those of other reported pure and mixed microorganism cultures. The degradation efficiencies of DEHP and di-n-butyl phthalate were significantly higher than those of dimethyl phthalate and diethyl phthalate (p < 0.05). The primary members of the CM9 consortium were identified as Rhodococcus, Niabella, Sphingopyxis, Achromobacter, Tahibacter, and Xenophilus. The degradation pathway was hypothesized to include both de-esterification and ß-oxidation. In contaminated soil, bioaugmentation with CM9 and biochar markedly enhanced the DEHP removal rate to 87.53% within 42 d, compared to that observed by the indigenous microbes (49.31%) (p < 0.05). During simulated bioaugmentation, the dominant genera in the CM9 consortium changed significantly over time, indicating their high adaptability to soil conditions and contribution to DEHP degradation. Rhodococcus, Pigmentiphaga and Sphingopyxis sharply decreased, whereas Tahibacter, Terrimonas, Niabella, Unclassified_f_Caulobacteraceae, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium showed considerable increases. These results provide a theoretical framework for the development of in situ bioremediation of phthalate (PAE)-contaminated soil by composite microbial inocula.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Rhodococcus , Poluentes do Solo , Biodegradação Ambiental , Dibutilftalato , Solo
20.
Sci Rep ; 10(1): 7891, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398757

RESUMO

Improving soil structure, fertility, and production is of major concern for establishing sustainable agroecosystems. Further research is needed to evaluate whether different methods of straw returning determine the variations of soil aggregation and the microbial community in aggregates in the long term. In this study, we comparatively investigated the effects of long-term fertilization regimes performed over six years, namely, non-fertilization (CK), chemical fertilization (CF), continuous straw return (CS), and continuous straw-derived biochar amendment (CB), on soil aggregation and bacterial communities in rice-wheat rotation systems. The results showed that straw/biochar application increased soil nutrient content and soil aggregate size distribution and stability at both 0-20 cm and 20-40 cm soil depths, compared with those of CF and CK; CB performed better than CS. CB increased bacterial community diversity and richness in 0-20 cm soil, and evenness in 0-40 cm soil (p < 0.05); CS had no significant effect on these aspects. Variations in the relative abundance of Actinobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, Gemmatimonadetes, and Latescibacteria in specific aggregates confirmed the different effects of straw/biochar on bacterial community structure. The partial least squares discrimination analysis and permutation multivariate analysis of variance revealed that fertilization, aggregate size fractions, and soil depth affected the bacterial community, although their effects differed. This study suggests that CB may reduce chemical fertilizer usage and improve the sustainability of rice-wheat cropping systems over the long term, with a better overall outcome than CS.


Assuntos
Agricultura/métodos , Bactérias/metabolismo , Carvão Vegetal/metabolismo , Fertilizantes/análise , Oryza/metabolismo , Triticum/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Carbono/metabolismo , Conservação dos Recursos Naturais , Ecossistema , Oryza/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Fatores de Tempo , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA