Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 182: 139-155, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38750914

RESUMO

Additively manufactured (AM) biodegradable zinc (Zn) alloys have recently emerged as promising porous bone-substituting materials, due to their moderate degradation rates, good biocompatibility, geometrically ordered microarchitectures, and bone-mimicking mechanical properties. While AM Zn alloy porous scaffolds mimicking the mechanical properties of trabecular bone have been previously reported, mimicking the mechanical properties of cortical bone remains a formidable challenge. To overcome this challenge, we developed the AM Zn-3Mg alloy. We used laser powder bed fusion to process Zn-3Mg and compared it with pure Zn. The AM Zn-3Mg alloy exhibited significantly refined grains and a unique microstructure with interlaced α-Zn/Mg2Zn11 phases. The compressive properties of the solid Zn-3Mg specimens greatly exceeded their tensile properties, with a compressive yield strength of up to 601 MPa and an ultimate strain of >60 %. We then designed and fabricated functionally graded porous structures with a solid core and achieved cortical bone-mimicking mechanical properties, including a compressive yield strength of >120 MPa and an elastic modulus of ≈20 GPa. The biodegradation rates of the Zn-3Mg specimens were lower than those of pure Zn and could be adjusted by tuning the AM process parameters. The Zn-3Mg specimens also exhibited improved biocompatibility as compared to pure Zn, including higher metabolic activity and enhanced osteogenic behavior of MC3T3 cells cultured with the extracts from the Zn-3Mg alloy specimens. Altogether, these results marked major progress in developing AM porous biodegradable metallic bone substitutes, which paved the way toward clinical adoption of Zn-based scaffolds for the treatment of load-bearing bony defects. STATEMENT OF SIGNIFICANCE: Our study presents a significant advancement in the realm of biodegradable metallic bone substitutes through the development of an additively manufactured Zn-3Mg alloy. This novel alloy showcases refined grains and a distinctive microstructure, enabling the fabrication of functionally graded porous structures with mechanical properties resembling cortical bone. The achieved compressive yield strength and elastic modulus signify a critical leap toward mimicking the mechanical behavior of load-bearing bone. Moreover, our findings reveal tunable biodegradation rates and enhanced biocompatibility compared to pure Zn, emphasizing the potential clinical utility of Zn-based scaffolds for treating load-bearing bony defects. This breakthrough opens doors for the wider adoption of zinc-based materials in regenerative orthopedics.


Assuntos
Ligas , Osso Cortical , Zinco , Ligas/química , Ligas/farmacologia , Zinco/química , Zinco/farmacologia , Animais , Camundongos , Osso Cortical/efeitos dos fármacos , Porosidade , Magnésio/química , Magnésio/farmacologia , Teste de Materiais , Força Compressiva , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Implantes Absorvíveis , Módulo de Elasticidade , Linhagem Celular
2.
Materials (Basel) ; 12(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438512

RESUMO

Zr-Si-N films with atomic ratios of N/(Zr + Si) of 0.54-0.82 were fabricated through high-power impulse magnetron sputtering (HiPIMS)-radio-frequency magnetron sputtering (RFMS) cosputtering by applying an average HiPIMS power of 300 W on the Zr target, various RF power levels on the Si target, and negative bias voltage levels of 0-150 V connected to the substrate holder. Applying a negative bias voltage on substrates enhanced the ion bombardment effect, which affected the chemical compositions, mechanical properties, and residual stress of the Zr-Si-N films. The results indicated that Zr-Si-N films with Si content ranging from 1.4 to 6.3 atom % exhibited a high hardness level of 33.2-34.6 GPa accompanied with a compressive stress of 4.3-6.4 GPa, an H/E* level of 0.080-0.107, an H3/E*2 level of 0.21-0.39 GPa, and an elastic recovery of 62-72%.

3.
ACS Appl Mater Interfaces ; 9(13): 11942-11949, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28177598

RESUMO

The surface morphology in polycrystalline silicon (poly-Si) film is an issue regardless of whether conventional excimer laser annealing (ELA) or the newer metal-induced lateral crystallization (MILC) process is used. This paper investigates the stress distribution while undergoing long-term mechanical stress and the influence of stress on electrical characteristics. Our simulated results show that the nonuniform stress in the gate insulator is more pronounced near the polysilicon/gate insulator edge and at the two sides of the polysilicon protrusion. This stress results in defects in the gate insulator and leads to a nonuniform degradation phenomenon, which affects both the performance and the reliability in thin-film transistors (TFTs). The degree of degradation is similar regardless of bending axis (channel-length axis, channel-width axis) or bending type (compression, tension), which means that the degradation is dominated by the protrusion effects. Furthermore, by utilizing long-term electrical bias stresses after undergoing long-tern bending stress, it is apparent that the carrier injection is severe in the subchannel region, which confirms that the influence of protrusions is crucial. To eliminate the influence of surface morphology in poly-Si, three kinds of laser energy density were used during crystallization to control the protrusion height. The device with the lowest protrusions demonstrates the smallest degradation after undergoing long-term bending.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA