Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687452

RESUMO

Surrounding rock deformation and consequent support failure are the most prominent issues in red-bed rock tunnel engineering and are mainly caused by the effects of unloading, rheology, and swelling. This study investigated the mechanical responses of two kinds of red-bed mudstone and sandstone under unloading conditions via laboratory observation. Volume dilation was observed on the rocks during unloading, and the dilatancy stress was linear with the initial confining pressure. However, the ratios of dilatancy stress to peak stress of the two rocks kept at a range from 0.8 to 0.9, regardless of confining pressures. Both the elastic strain energy and the dissipated energy evolved synchronously with the stress-strain curve and exhibited conspicuous confining pressure dependence. Special attention was paid to the evolution behavior of the dilatancy angle. The dilatancy angle changed linearly during unloading. When the confining pressure was 10 MPa, the dilatancy angle of mudstone decreased from 26.8° to 12.5° whereas the dilatancy angle of sandstone increased from 34.6° to 51.1°; when the confining pressure rose to 25 MPa, the dilatancy angle of mudstone and sandstone decreased from 45.8° to 17.4° and increased from 21.7° to 39.5°, respectively. To further understand the evolution of the dilatancy angle, we discussed the links between the variable dilatancy angle and the processes of rock deformation and energy dissipation.

2.
Materials (Basel) ; 15(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36499799

RESUMO

The void compression stage causes porous cement mortar to present special mechanical properties. In order to study the compaction behavior and the damage evolution of the porous material, cement mortar specimens with an average porosity of 26.8% were created and cyclic uniaxial compression tests were carried out. The irreversible strain accumulated in the tests was obtained by cyclic loading and unloading. As the secant modulus of the porous cement mortar increases with stress in the pre-peak deformation stage, its damage variable is defined according to the accumulated irreversible strain instead of modulus degradation. The strain-based damage indicator fitted with the damage evolution law is characterized by linear accumulation at the beginning and has an acceleration rate of about 0.3 in the pre-peak deformation stage, and the damage value converges to 1 at failure. Based on the Weibull distribution, a constitutive damage model of porous cement mortar is improved by considering both the damage evolution during the plastic deformation stage and the mechanical behavior in the compaction stage. The theoretical envelope curves obtained by the constitutive model are in good agreement with the experimental envelope curves of cyclic uniaxial compression in the compaction and pre-peak stages, and the average absolute error is about 0.54 MPa in the entire pre-peak stage, so the proposed damage constitutive model can characterize the damage-induced mechanical properties of porous cement mortar in the compaction and pre-peak stages.

3.
Nanoscale Res Lett ; 10(1): 1002, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26173676

RESUMO

Indium oxide (In2O3) tower-shaped nanostructure gas sensors have been fabricated on Cr comb-shaped interdigitating electrodes with relatively narrower interspace of 1.5 µm using thermal evaporation of the mixed powders of In2O3 and active carbon. The Schottky contact between the In2O3 nanotower and the Cr comb-shaped interdigitating electrode forms the Cr/In2O3 nanotower Schottky diode, and the corresponding temperature-dependent I-V characteristics have been measured. The diode exhibits a low Schottky barrier height of 0.45 eV and ideality factor of 2.93 at room temperature. The In2O3 nanotower gas sensors have excellent gas-sensing characteristics to hydrogen concentration ranging from 2 to 1000 ppm at operating temperature of 120-275 °C, such as high response (83 % at 240 °C to 1000 ppm H2), good selectivity (response to H2, CH4, C2H2, and C3H8), and small deviation from the ideal value of power exponent ß (0.48578 at 240 °C). The sensors show fine long-term stability during exposure to 1000 ppm H2 under operating temperature of 240 °C in 30 days. Lots of oxygen vacancies and chemisorbed oxygen ions existing in the In2O3 nanotowers according to the x-ray photoelectron spectroscopy (XPS) results, the change of Schottky barrier height in the Cr/In2O3 Schottky junction, and the thermoelectronic emission due to the contact between two In2O3 nanotowers mainly contribute for the H2 sensing mechanism. The growth mechanism of the In2O3 nanotowers can be described to be the Vapor-Solid (VS) process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA