Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 281: 116641, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936053

RESUMO

Copper pollution has attracted global environmental concern. Widespread Cu pollution results in excessive Cu accumulation in human. Epidemiological studies and animal experiments revealed that Cu exposure might have reproductive toxicity. Cuproptosis is a recently reported Cu-dependent and programmed cell death pattern. However, the mechanism by which copper exposure might cause cell cuproptosis is largely unknown. We chose trophoblast cells as cell model and found that copper exposure causes trophoblast cell cuproptosis. In mechanism, copper exposure up-regulates lnc-HZ11 expression levels, which increases intracellular Cu2+ levels and causes trophoblast cell cuproptosis. Knockdown of lnc-HZ11 efficiently reduces intracellular Cu2+ levels and alleviate trophoblast cell cuproptosis, which could be further alleviated by co-treatment with DC or TEPA. These results discover novel toxicological effects of copper exposure and also provide potential target for protection trophoblast cells from cuproptosis in the presence of excessive copper exposure.


Assuntos
Cobre , Trofoblastos , Regulação para Cima , Trofoblastos/efeitos dos fármacos , Cobre/toxicidade , Humanos , Regulação para Cima/efeitos dos fármacos , Linhagem Celular , Poluentes Ambientais/toxicidade , RNA Longo não Codificante/genética
2.
Ecotoxicol Environ Saf ; 278: 116409, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701656

RESUMO

Environmental benzo(a)pyrene (BaP) and itsmetabolite benzo(a)pyrene-7, 8-dihydrodiol-9, 10-epoxide (BPDE), classic endocrine disrupting chemical and persistent organic pollutant, could cause miscarriage. However, the detailed mechanisms are still largely unclear and should be further explored. In this study, we discovered that exposure of trophoblast cells with BPDE could suppressed cell invasion/migration by inhibiting MEST/VIM (Vimentin) pathway. Moreover, BPDE exposure also increased lnc-HZ01 expression level, which further inhibited MEST/VIM pathway and then suppressed invasion/migration. Knockdown of lnc-HZ01 or overexpression of MEST could efficiently rescue invasion/migration of BPDE-exposed Swan 71 cells. Furthermore, lnc-HZ01 was highly expressed and MEST/VIM were lowly expressed in recurrent miscarriage (RM) villous tissues compared with healthy control (HC) group. Finally, we also found that BaP exposure inhibited murine Mest/Vim pathway in placental tissues and induced miscarriage in BaP-exposed mice. Therefore, the regulatory mechanisms were similar in BPDE-exposed human trophoblast cells, RM villous tissues, and placental tissues of BaP-exposed mice with miscarriage, building a bridge to connect BaP/BPDE exposure, invasion/migration, and miscarriage. This study provided novel insights in the toxicological effects and molecular mechanisms of BaP/BPDE-induced miscarriage, which is helpful for better elucidating the toxicological risks of BaP/BPDE on female reproduction.


Assuntos
7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Benzo(a)pireno , Movimento Celular , Regulação para Baixo , Trofoblastos , Trofoblastos/efeitos dos fármacos , Feminino , Animais , Movimento Celular/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Humanos , Camundongos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Gravidez , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Linhagem Celular , Aborto Espontâneo/induzido quimicamente
3.
Part Fibre Toxicol ; 21(1): 13, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454452

RESUMO

BACKGROUND: With rapid increase in the global use of various plastics, microplastics (MPs) and nanoplastics (NPs) pollution and their adverse health effects have attracted global attention. MPs have been detected out in human body and both MPs and NPs showed female reproductive toxicological effects in animal models. Miscarriage (abnormal early embryo loss), accounting for 15-25% pregnant women worldwide, greatly harms human reproduction. However, the adverse effects of NPs on miscarriage have never been explored. RESULTS: In this study, we identified that polystyrene (PS) plastics particles were present in women villous tissues. Their levels were higher in villous tissues of unexplained recurrent miscarriage (RM) patients vs. healthy control (HC) group. Furthermore, mouse assays further confirmed that exposure to polystyrene nanoplastics (PS-NPs, 50 nm in diameter, 50 or 100 mg/kg) indeed induced miscarriage. In mechanism, PS-NPs exposure (50, 100, 150, or 200 µg/mL) increased oxidative stress, decreased mitochondrial membrane potential, and increased apoptosis in human trophoblast cells by activating Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3 signaling through mitochondrial pathway. The alteration in this signaling was consistent in placental tissues of PS-NPs-exposed mouse model and in villous tissues of unexplained RM patients. Supplement with Bcl-2 could efficiently suppress apoptosis in PS-NPs-exposed trophoblast cells and reduce apoptosis and alleviate miscarriage in PS-NPs-exposed pregnant mouse model. CONCLUSIONS: Exposure to PS-NPs activated Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3, leading to excessive apoptosis in human trophoblast cells and in mice placental tissues, further inducing miscarriage.


Assuntos
Aborto Espontâneo , Nanopartículas , Gravidez , Feminino , Humanos , Animais , Camundongos , Aborto Espontâneo/induzido quimicamente , Poliestirenos/toxicidade , Caspase 3 , Microplásticos , Plásticos , Caspase 2 , Placenta , Apoptose , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-bcl-2 , Nanopartículas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA