Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 255: 121477, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520778

RESUMO

Iodinated X-ray contrast media (ICM) are ubiquitously present in water sources and challenging to eliminate using conventional processes, posing a significant risk to aquatic ecosystems. Ultraviolet light-emitting diodes (UV-LED) emerge as a promising technology for transforming micropollutants in water, boasting advantages such as diverse wavelengths, elimination of chemical additives, and no induction of microorganisms' resistance to disinfectants. The research reveals that iohexol (IOX) degradation escalates as UV wavelength decreases, attributed to enhanced photon utilization efficiency. Pseudo-first-order rate constants (kobs) were determined as 3.70, 2.60, 1.31 and 0.65 cm2 J-1 at UV-LED wavelengths of 255, 265, 275 and 285 nm, respectively. The optical properties of dissolved organic matter (DOM) and anions undeniably influence the UV-LED photolysis process through photon competition and the generation of reactive substances. The influence of Cl- on IOX degradation was insignificant at UV-LED 255, but it promoted IOX degradation at 265, 275 and 285 nm. IOX degradation was accelerated by ClO2-, NO3-and HA due to the formation of various reactive species. In the presence of NO3-, the kobs of IOX followed the order: 265 > 255 > 275 > 285 nm. Photosensitizers altered the spectral dependence of IOX, and the intermediate photoactivity products were detected using electron spin resonance. The transformation pathways of IOX were determined through density functional theory calculations and experiments. Disinfection by-products (DBPs) yields of IOX during UV-LED irradiation decreased as the wavelength increased: 255 > 265 > 275 > 285 nm. The cytotoxicity index value decreased as the UV-LED wavelength increased from 255 to 285 nm. These findings are crucial for selecting the most efficient wavelength for UV-LED degradation of ICM and will benefit future water purification design.

2.
Environ Technol ; 45(11): 2132-2143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36601874

RESUMO

The efficient removal of 2-Methylisoborneol (2-MIB), a typical odour component, in water treatment plants (WTPs), poses a great challenge to conventional water treatment technology due to its chemical stability. In this study, the combination of ultraviolet light-emitting diode (UV-LED) and chlorine (UV-LED/chlorine) was exploited for 2-MIB removal, and the role of ultraviolet (UV) wavelength was investigated systematically. The results showed that UV or chlorination alone did not degrade 2-MIB effectively, and the UV/chlorine process could degrade 2-MIB efficiently, following the pseudo-first-order kinetic model. The 275 nm UV exhibited higher 2-MIB degradation efficiency in this UV-LED/chlorine system than 254 nm UV, 265 nm UV and 285 nm UV due to the highest mole adsorption coefficient and quantum yield of chlorine in 275 nm UV. ·OH and ·Cl produced in the 275 nm UV/chlorine system played major roles in 2-MIB degradation. HCO3- and Natural organic matter (NOM), prevalent in water, consumed ·OH and ·Cl, thus inhibiting the 2-MIB degradation by UV-LED/chlorine. In addition, NOM and 2-MIB could form a photonic competition effect. The degradation of 2-MIB by UV-LED/chlorine was done mainly through dehydration and demethylation, and odorous intermediates, such as camphor, were produced. 2-MIB was degraded through the α bond fracture and six-membered ring opening to form saturated or unsaturated hydrocarbons and aldehydes. Four DBPs, chloroform (CF), trichloroacetaldehyde (TCE), trichloroacetone (TCP) and dichloroacetone (DCP), were mainly generated, and CF was the most significant by-product.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro/química , Desinfecção/métodos , Poluentes Químicos da Água/química , Raios Ultravioleta , Halogenação , Clorofórmio , Cinética , Purificação da Água/métodos , Oxirredução
3.
Sci Total Environ ; 912: 168920, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029977

RESUMO

Pre-oxidation and powdered activate carbon (PAC) are usually used to remove algae and odorants in drinking waterworks. However, the influence of interaction between oxidants and PAC on the treatment performance are scarcely known. This study systematically investigated the combination schemes of four oxidants (KMnO4, NaClO, ClO2, and O3) and PAC on the inactivation of Microcystis aeruginosa cells and removal of four frequently detected odorants in raw water (diethyl disulfide (DEDS), 2,2'-oxybis(1chloropropane) (DCIP), 2-methylisoborneol (2-MIB) and geosmin (GSM)). O3 showed highest pseudo-first-order removal rate for all four compounds and NaClO exhibited highest inactivation rates for the cell viability and Chlorophyll a (Chl-a). The Freundlich model fitted well for the adsorption of DEDS and DCIP by PAC. When treated by combined oxidation/PAC, the removal ratio of algae cells and odorants were lower (at least 1.6 times) than the sum of removal ratios obtained in oxidation or PAC adsorption alone. Among these four oxidants, the highest synchronous control efficiency of odorants (52 %) and algae (66 %) was achieved by NaClO/PAC. Prolonging the dosage time interval promoted the removal rates. The pre-PAC/post-oxidation processes possessed comparable efficiency for the removal of odorants and algae cells comparing with pre-oxidation/post-PAC process, but significantly inhibited formation of disinfection byproducts (DBPs), especially for the formation of C-DBPs (for NaClO and ClO2), bromate (for O3) and chlorate/chlorite (for ClO2). This study could provide a better understanding of improving in-situ operation of the combined pre-treatments of oxidation and PAC for source water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Oxidantes , Desinfecção , Carvão Vegetal , Odorantes , Adsorção , Pós , Clorofila A , Água
4.
Sci Total Environ ; 880: 163297, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028653

RESUMO

Mixed chlorine/chloramines are common in drinking water distribution systems (DWDSs); however, their transformation and impact on chemical and microbial characteristics are not well understood. We systematically investigated water quality parameters associated with mixed chlorine/chloramine species conversion in 192 samples (including raw, finished, and tap water) collected throughout the year in a city in East China. Various chlorine/chloramine species (free chlorine, monochloramine [NH2Cl], dichloramine [NHCl2], and organic chloramines [OC]) were detected in both chlorinated and chloraminated DWDSs. NHCl2 + OC increased with transport distance along the pipeline network. The maximum proportion of NHCl2 + OC in over total chlorine in tap water reached 66 % and 38 % from chlorinated and chloraminated DWDSs, respectively. Both free chlorine and NH2Cl showed a rapid decay in the water pipe systems, but NHCl2 and OC were more persistent. Correlations between chlorine/chloramine species and physicochemical parameters were established. Models for predicting the sum of chloroform/TCM, bromodichloromethane/BDCM, chlorodibromomethane/CBDM, and bromoform/TBM (THM4) (R2 = 0.56) and haloacetic acids (HAAs) (R2 = 0.65) exhibited greater accuracy based on machine learning tuned with chlorine/chloramine species, particularly NHCl2 + OC. The predominant bacterial communities in mixed chlorine/chloramine systems were those resistant to chlorine or chloramine such as proteobacteria. NH2Cl was the most significant explanatory factor (28.1 %) for the variation in microbial community assemblage in chloraminated DWDSs. Although residual free chlorine and NHCl2 + OC, accounted for a smaller proportion of chlorine species in chloraminated DWDSs, they played an essential role (12.4 % and 9.1 %, respectively) in the microbial community structure.


Assuntos
Água Potável , Purificação da Água , Cloraminas , Cloro , Qualidade da Água , Desinfecção
5.
Environ Sci Pollut Res Int ; 30(15): 44325-44336, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36690857

RESUMO

2,4,6-Trichloroanisole (2,4,6-TCA) has aroused a special concern for their odor problem and potential threats. In this study, the degradation of 2,4,6-TCA by UV/chlorination with different UV sources was compared, including low-pressure mercury lamp (LPUV, 254 nm) and ultraviolet light-emitting diode (UV-LED, 275 and 285 nm). The maximum removal of 2,4,6-TCA can be achieved by 275-nm UV-LED/chlorination in neutral and alkaline conditions which was 80.0%. The reaction, kinetics, and water matrix parameters on 2,4,6-TCA degradation were also evaluated. During UV-LED (275 nm)/chlorination, 2,4,6-TCA degradation was mainly caused by direct UV photolysis and indirect hydroxyl radical (HO·) oxidation, while reactive chlorine radicals (RCSs) had a negligible contribution. The second-order rate constant between HO· and 2,4,6-TCA was determined as 3.1 × 109 M-1 s-1. Increasing initial chlorine dosage and decreasing 2,4,6-TCA concentration or pH value significantly promoted 2,4,6-TCA degradation during UV/chlorination process. The presence of natural organic matter (NOM) and bicarbonate (HCO3-) can inhibit 2,4,6-TCA degradation, while chloride ion (Cl-) had a negligible effect. The kinetic model for 2,4,6-TCA degradation was established and validated, and the degradation pathways were proposed based on the identified intermediates. Furthermore, UV-LED (275 nm)/chlorination also exhibited a promising effect on 2,4,6-TCA removal in real water, which can be used to control 2,4,6-TCA pollution and odor problems.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Água , Halogenação , Cloro/análise , Cinética , Odorantes , Poluentes Químicos da Água/análise , Raios Ultravioleta , Oxirredução
6.
Water Res ; 219: 118528, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569275

RESUMO

Permanganate (Mn(VII)) is widely used as a mild oxidant in water treatment. However, the reaction rates of some emerging contaminants with Mn(VII) are extremely low. In this study, benzoquinone (BQ), a redox mediator with the important component in dissolved organic matter (DOM), enhanced the oxidation of bisphenol A (BPA) by Mn(VII) in a wide pH range of 4.0-10.0. The redox cycle of BQ would produce semiquinone radicals, which could act as ligands to stabilize the formed Mn(III) in the system to promote the oxidation of BPA. Notably, the presence of BQ might promote the formation of MnO2. A novel mechanism was proposed that singlet oxygen (1O2), Mn(III)-ligands (Mn(III)-L) and in-situ formed MnO2 were the main contributors to accelerate BPA degradation in the Mn(VII)/BQ system. Under acidic conditions, the in-situ formed MnO2 involved in the redox reaction and part of the Mn(IV) was reduced to Mn(III), indicating that the electron transfer of BQ promoted the formation of active Mn species and enhanced the Mn(VII) oxidation performance. Semiquinone radicals generated by BQ transformation would couple with the hydrogen substitution products of BPA to inhibit BPA self-coupling and promote the ring-opening reactions of BPA. Mn(VII)/BQ had better effect in raw water than in pure water, indicating that the Mn(VII)/BQ system has high potential for practical application. This study provided insights into the role of DOM in enhancing the Mn(VII) oxidation in water treatment.


Assuntos
Compostos de Manganês , Óxidos , Compostos Benzidrílicos , Benzoquinonas , Ligantes , Oxirredução , Fenóis , Quinonas
7.
J Hazard Mater ; 429: 128370, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121291

RESUMO

Iodinated trihalomethanes (I-THMs) have drawn increasing concerns due to their higher toxicity than those of their chlorinated and brominated analogues. In this study, I-THM formation was firstly evaluated for three treatment scenarios - (i) chlorine alone, (ii) chloramine alone, and (iii) mixed chlorine/chloramine - in the presence and absence of UV irradiation for the iodide-containing humic acid solution or natural water. The results indicated that I-THM formation decreased in the order of mixed chlorination/chloramination > chloramination > > chlorination, which fitted the trend of toxicity evaluation results using Chinese hamster ovary cells. Conversely, total organic halide concentration decreased in the order of chlorination > > chloramination ≈ mixed chlorination/chloramination. Besides, I-THM formation can be efficiently controlled in a UV-activated mixed chlorine/chloramine system. Influencing factors including pH values and Br-/I- molar ratios were also systematically investigated in a mixed chlorine/chloramine system. Enhanced I-THM formation was observed with increasing pH values (6.0-8.0) and Br-/I- molar ratios (1: 1-10: 1). The results obtained in this study can provide new insights into the increasing risk of I-THM formation in a mixed chlorine/chloramine system and the effective control of I-THMs in the iodide-containing water using UV irradiation.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Células CHO , Cloraminas , Cloro , Cricetinae , Cricetulus , Desinfecção/métodos , Halogenação , Trialometanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
8.
Water Res ; 203: 117549, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419919

RESUMO

Odors and tastes have become universal problems related to drinking water quality. In addition to the typical odor problems caused by algae or microorganisms, the occurrence of odors derived from drinking water disinfection have attracted attention. The chlor(am)ination-derived odor substances have certain toxicity and odor-causing characteristics, and would enter the tap water through water distribution systems, directly affecting drinking water safety and customer experience. This study provided a comprehensive overview of the occurrence, detection, and control of odor substances derived from drinking water chlor(am)ination disinfection. The occurrence and formation mechanisms of several typical types of disinfection derived odor substances were summarized, including haloanisoles, N-chloroaldimines, iodotrihalomethanes, and halophenoles. They are mainly derived from specific precursors such as halophenols, anisoles, and amino acids species during the disinfection or distribution networks. In addition, the change of disinfectant during chlor(am)ination was also one of the causes of disinfection odors. Due to the extremely low odor threshold concentrations (OTCs) of these odor substances, the effective sample pre-enrichment for instrument identification and quantification are essential. The control strategies of odor problems mainly include adsorption, chemical oxidation, and combined processes such as ozonation and biological activated carbon processes (O3/BAC) and ultraviolet-based advanced oxidation processes (UV-AOPs). Finally, the challenges and possible future research directions in this research field were discussed and proposed.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Odorantes , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA