RESUMO
The application of titanium and its alloys under friction conditions is severely restricted, owing to their poor wear resistance. The paper presents the results of studies of the composition, microstructure, and tribological properties of Ti-TiC-based composite coatings formed on titanium alloys by the electroarc treatment in an aqueous electrolyte using a graphite anode. It has been found that TiC grains have a different stoichiometry and do not contain oxygen. The grain size varies from hundreds of nanometers to tens of micrometers, and the micro-hardness of the treated surface reached the value of 29.5 GPa. The wear resistance of the treated surface increased approximately 40-fold, and the friction coefficient with steel decreased to 0.08-0.3 depending on the friction conditions. The formation of a composite material based on Ti-TiC will contribute to the effective protection of titanium alloys from frictional loads in engineering.
RESUMO
This paper studied the effect of additives of 0.5-20 wt.% synthetic CaSiO3 wollastonite on the thermodynamic, mechanical, and tribological characteristics and structure of polymer composite materials (PCM) based on ultra-high-molecular weight polyethylene (UHMWPE). Using thermogravimetric analysis, X-ray fluorescence, scanning electron microscope, and laser light diffraction methods, it was shown that autoclave synthesis in the multicomponent system CaSO4·2H2O-SiO2·nH2O-KOH-H2O allows one to obtain neeindle-shaped nanosized CaSiO3 particles. It was shown that synthetic wollastonite is an effective filler of UHMWPE, which can significantly increase the deformation-strength and tribological characteristics of PCM. The active participation of wollastonite in tribochemical reactions occurring during friction of PCM by infrared spectroscopy was detected: new peaks related to oxygen-containing functional groups (hydroxyl and carbonyl) appeared. The developed UHMWPE/CaSiO3 materials have high wear resistance and can be used as triboengineering materials.