Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
1.
Poult Sci ; 103(8): 103885, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38851182

RESUMO

Avian influenza, particularly the H9N2 subtype, presents significant challenges to poultry health, underscoring the need for effective antiviral interventions. This study explores the antiviral capabilities of Belamcanda extract, a traditional Chinese medicinal herb, against H9N2 Avian influenza virus (AIV) in specific pathogen-free (SPF) chicks. Through a comprehensive approach, we evaluated the impact of the extract on cytokine modulation and crucial immunological signaling pathways, essential for understanding the host-virus interaction. Our findings demonstrate that Belamcanda extract significantly modulates the expression of key inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), interleukin-2 (IL-2), and interleukin-6 (IL-6), which are pivotal to the host's response to H9N2 AIV infection. Western blot analysis further revealed that the extract markedly reduces the expression of critical immune signaling molecules such as toll-like receptor 3 (TLR3), TIR-domain-containing adapter-inducing interferon-ß (TRIF), and nuclear factor kappa B (NF-κB). These insights into the mechanisms by which Belamcanda extract influences host immune responses and hinders viral replication highlight its potential as an innovative antiviral agent for poultry health management. The study advances our comprehension of natural compounds' antiviral mechanisms and lays the groundwork for developing strategies to manage viral infections in poultry. The demonstrated ability of Belamcanda extract to modulate immune responses and inhibit viral replication establishes it as a promising candidate for future antiviral therapy development, especially in light of the need for effective treatments against evolving influenza virus strains and the critical demand for enhanced poultry health management strategies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38847162

RESUMO

BACKGROUND: Atherosclerosis (AS) is a chronic inflammatory disease characterized by the accumulation of lipids, the formation of lesion plaques, and the narrowing of arterial lumens. Rhubarb has significant effects against AS, but there is a lack of analysis and exploration of the mechanism of action of the transitional components in serum containing rhubarb. OBJECTIVE: This work aims to combine serum pharmacochemistry, network pharmacology, and molecular docking to explore active ingredients and mechanism of rhubarb against AS. METHOD: Firstly, the components of rhubarb in blood samples were identified using HPLC-QTOF/MS. The ingredients-targets-disease interaction network of rhubarb was constructed through network pharmacology. Then, molecular docking between the ingredients and the core targets was carried out using the Autodock Vina software. RESULTS: Eleven active ingredients and five metabolites were preliminarily identified. The network pharmacology results showed that chrysophanol, resveratrol, and emodin might have potential pharmacological effects on AS. The PPI network showed that the key proteins were PTGS2, ESR1, PTGS1, and ELANE. GO analysis revealed that genes were mainly enriched in the inflammatory response and response to exogenous stimuli. Moreover, these genes were related to IL-17 signaling pathways, lipid and atherosclerosis, and other pathways. Molecular docking analyses showed that chrysophanol and emodin have strong binding affinities with the target proteins PTGS2 and PTGS1. CONCLUSION: A comprehensive strategy combining serum pharmacochemistry with network pharmacology and molecular docking was employed to investigate the active ingredients and the mechanism of rhubarb in treating AS, which provided a basis for studying the pharmacological effects and action mechanisms of rhubarb.

3.
Metab Eng ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942196

RESUMO

Yarrowia lipolytica is an industrial yeast that can convert waste oil to value-added products. However, it is unclear how this yeast metabolizes lipid feedstocks, specifically triacylglycerol (TAG) substrates. This study used 13C-metabolic flux analysis (13C-MFA), genome-scale modeling, and transcriptomics analyses to investigate Y. lipolytica W29 growth with oleic acid, glycerol, and glucose. Transcriptomics data was used to guide 13C-MFA model construction and to validate the 13C-MFA results. The 13C-MFA data was then used to constrain a genome-scale model (GSM), which predicted Y. lipolytica fluxes, cofactor balance, and theoretical yields of terpene products. The three data sources provided new insights into cellular regulation during catabolism of glycerol and fatty acid components of TAG substrates, and how their consumption routes differ from glucose catabolism. We found that (1) over 80% of acetyl-CoA from oleic acid is processed through the glyoxylate shunt, a pathway that generates less CO2 compared to the TCA cycle, (2) the carnitine shuttle is a key regulator of the cytosolic acetyl-CoA pool in oleic acid and glycerol cultures, (3) the oxidative pentose phosphate pathway and mannitol cycle are key routes for NADPH generation, (4) the mannitol cycle and alternative oxidase activity help balance excess NADH generated from ß-oxidation of oleic acid, and (5) asymmetrical gene expressions and GSM simulations of enzyme usage suggest an increased metabolic burden for oleic acid catabolism.

4.
Nat Commun ; 15(1): 5314, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38906879

RESUMO

The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.

5.
J Clin Med ; 13(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38930036

RESUMO

Objectives: Gait speed indicates the individual's functional status and predicts overall health. This study aims to determine (1) the intra- and inter-rater and test-retest reliability of the dynamic 4 m gait speed test protocol; (2) establish the normative reference values of habitual and fast gait speeds in community-dwelling healthy Singaporean adults aged 21 to 80; and (3) explore the association of age, gender, height, weight, and body mass index (BMI) on gait speed. Methods: This prospective cross-sectional study recruited healthy ambulatory community-dwelling Singaporeans aged 21 to 80 who could ambulate independently without aid. Participants were excluded if they required walking aids; were pregnant; or had physical, medical, or cognitive conditions that may affect gait. Each participant completed at least two habitual and fast gait speed test trials via a 4 m walkway with a dynamic start. The data were analysed by descriptive statistics, the Mann-Whitney test, the Spearman coefficient, and the interclass correlation coefficient (ICC). Results: In total, 178 males and 201 females were included in the data analysis. The median age was 45.0 years [interquartile range (IQR) 26.2-59.0], and the median height was 1.64 metres (m) (IQR 1.58-1.70). The median habitual gait speed was 1.08 metre/second (m/s) (IQR 0.97-1.22), and the fast gait speed was 1.55 m/s (IQR 1.40-1.70). The ICC for reliability ranged from 0.84 to 0.99, indicating that the 4 m gait speed test had good-to-excellent reliability. Conclusions: Gait speeds were not influenced by gender but declined with age advancement. Age and height and age and BMI were weakly correlated to habitual and fast gait speed, respectively. We established the norm values for the 4 m gait speeds in Singapore and proved it to be a reliable gait speed assessment ready for immediate community applications.

6.
Eur J Pharmacol ; 977: 176748, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38897443

RESUMO

An increase in fibrous connective tissue and a decrease in parenchymal cells in organ tissues are the primary pathological alterations linked to organ fibrosis. If fibrosis is not treated, organ structure is destroyed, function can decline, or even fail, posing a serious risk to human life and health. Numerous organs develop fibrosis, and organ fibroproliferative illnesses account for almost 45% of patient deaths from various diseases in the industrialized world, as well as a major cause of disability and mortality in many other diseases. Recently, it has become evident that histone modification is an important way to regulate gene expression in organ fibrosis. Histone modifications alter the structure of chromatin, thereby affecting gene accessibility. Histone acetylation modifications relax chromatin, making it easier for gene transcription factors to access DNA, thereby promoting gene transcription. In addition, histone modifications recruit other proteins to interact with chromatin to form complexes that further regulate gene expression. Histone methylation modifications recruit methylation-reading proteins that recognize methylation marks and alter gene expression status. It not only affects the normal physiological function of cells, but also plays an important role in organ fibrosis. This article reviews the important role played by histone modifications in organ fibrosis and potential therapeutic approaches.


Assuntos
Fibrose , Histonas , Humanos , Histonas/metabolismo , Animais , Processamento de Proteína Pós-Traducional , Acetilação , Metilação
7.
J Cancer Res Clin Oncol ; 150(5): 268, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772976

RESUMO

PURPOSE: Papillary thyroid carcinoma (PTC) with metastatic lymph nodes (LNs) is closely associated with disease recurrence. This study accessed the value of superb microvascular imaging (SMI) in the diagnosis and prediction of metastatic cervical LNs in patients with PTC. METHODS: A total of 183 cervical LNs (103 metastatic and 80 reactive) from 116 patients with PTC were analysed. Metastatic cervical LNs were confirmed by pathology or/and cytology; reactive cervical LNs were confirmed by pathology or clinical features. The characteristic of conventional ultrasound (US) was extracted using univariate and multivariate analyses. The diagnostic performance of US and SMI were compared using the area under the receiver operating curve (AUC) with corresponding sensitivity and specificity. A nomogram was developed to predict metastatic LNs in patients with PTC, based on multivariate analyses. RESULTS: L/S < 2, ill-defined border, absence of hilum, isoechoic or hyperechoic, heterogeneous internal echo, peripheral or mixed vascular pattern on color Doppler flow imaging (CDFI) and SMI, and a larger SMI vascular index appeared more frequently in metastatic LNs in the training datasets than in reactive LNs (P < 0.05). The diagnostic sensitivity, specificity and accuracy of SMI vs US are 94.4% and 87.3%, 79.3% and 69.3%, and 87.6% and 79.1%, respectively; SMI combined with US exhibited a higher AUC [0.926 (0.877-0.975)] than US only [0.829 (0.759-0.900)]. L/S < 2, peripheral or mixed vascular type on CDFI, and peripheral or mixed vascular types on SMI were independent predictors of metastatic LNs with PTC. The nomogram based on these three parameters exhibited excellent discrimination, with an AUC of 0.926. CONCLUSION: SMI was superior to US in diagnosing metastatic LNs in PTC. US combined with SMI significantly improved the diagnostic accuracy of metastatic cervical LNs with PTC. SMI is efficacious for differentiating and predicting metastatic cervical LNs.


Assuntos
Linfonodos , Metástase Linfática , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Feminino , Metástase Linfática/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/patologia , Adulto , Linfonodos/patologia , Linfonodos/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Microvasos/patologia , Idoso , Adulto Jovem , Pescoço/diagnóstico por imagem , Nomogramas , Adolescente , Carcinoma Papilar/diagnóstico por imagem , Carcinoma Papilar/patologia , Carcinoma Papilar/secundário , Estudos Retrospectivos , Curva ROC , Ultrassonografia/métodos , Sensibilidade e Especificidade , Ultrassonografia Doppler em Cores/métodos
8.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731436

RESUMO

In our research, we explored a natural substance called Oxymatrine, found in a traditional Chinese medicinal plant, to fight against a common bird flu virus known as H9N2. This virus not only affects birds but can also pose a threat to human health. We focused on how this natural compound can help in stopping the virus from spreading in cells that line the lungs of birds and potentially humans. Our findings show that Oxymatrine can both directly block the virus and boost the body's immune response against it. This dual-action mechanism is particularly interesting because it indicates that Oxymatrine might be a useful tool in developing new ways to prevent and treat this type of bird flu. Understanding how Oxymatrine works against the H9N2 virus could lead to safer and more natural ways to combat viral infections in animals and humans, contributing to the health and well-being of society. The H9N2 Avian Influenza Virus (AIV) is a persistent health threat because of its rapid mutation rate and the limited efficacy of vaccines, underscoring the urgent need for innovative therapies. This study investigated the H9N2 AIV antiviral properties of Oxymatrine (OMT), a compound derived from traditional Chinese medicine, particularly focusing on its interaction with pulmonary microvascular endothelial cells (PMVECs). Employing an array of in vitro assays, including 50% tissue culture infectious dose, Cell Counting Kit-8, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot, we systematically elucidated the multifaceted effects of OMT. OMT dose-dependently inhibited critical antiviral proteins (PKR and Mx1) and modulated the expression of type I interferons and key cytokines (IFN-α, IFN-ß, IL-6, and TNF-α), thereby affecting TLR3 signaling and its downstream elements (NF-κB and IRF-3). OMT's antiviral efficacy extended beyond TLR3-mediated responses, suggesting its potential as a versatile antiviral agent. This study not only contributes to the growing body of research on the use of natural compounds as antiviral agents but also underscores the importance of further investigating the broader application of OMT for combating viral infections.


Assuntos
Antivirais , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Matrinas , Transdução de Sinais , Receptor 3 Toll-Like , Animais , Cães , Humanos , Antivirais/farmacologia , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Influenza Aviária/tratamento farmacológico , Influenza Aviária/imunologia , Células Madin Darby de Rim Canino , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo
9.
Int Immunopharmacol ; 134: 112222, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728881

RESUMO

Cardiovascular disease is currently the number one cause of death endangering human health. There is currently a large body of research showing that the development of cardiovascular disease and its complications is often accompanied by inflammatory processes. In recent years, epitranscriptional modifications have been shown to be involved in regulating the pathophysiological development of inflammation in cardiovascular diseases, with 6-methyladenine being one of the most common RNA transcriptional modifications. In this review, we link different cardiovascular diseases, including atherosclerosis, heart failure, myocardial infarction, and myocardial ischemia-reperfusion, with inflammation and describe the regulatory processes involved in RNA methylation. Advances in RNA methylation research have revealed the close relationship between the regulation of transcriptome modifications and inflammation in cardiovascular diseases and brought potential therapeutic targets for disease diagnosis and treatment. At the same time, we also discussed different cell aspects. In addition, in the article we also describe the different application aspects and clinical pathways of RNA methylation therapy. In summary, this article reviews the mechanism, regulation and disease treatment effects of m6A modification on inflammation and inflammatory cells in cardiovascular diseases in recent years. We will discuss issues facing the field and new opportunities that may be the focus of future research.


Assuntos
Doenças Cardiovasculares , Epigênese Genética , Inflamação , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Inflamação/genética , Animais , Adenina/análogos & derivados , Transcriptoma , Metilação
10.
World J Gastrointest Surg ; 16(4): 1030-1042, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38690053

RESUMO

Blastomas, characterized by a mixture of mesenchymal, epithelial, and undifferentiated blastematous components, are rare malignant neoplasms originating from precursor blast cells. This review focuses on digestive system blastomas in adult patients, including gastroblastoma, hepatoblastoma, and pancreatoblastoma. Gastroblastoma is a biphasic, epitheliomesenchymal tumor, with only sixteen cases reported to date. In addition to the characteristic histology, metastasis-associated lung adenocarcinoma transcript 1 - glioma-associated oncogene homolog 1 gene fusion is typical, although recently novel ewing sarcoma breakpoint region 1 - c-terminal binding protein 1 and patched 1 - glioma-associated oncogene homolog 2 fusions have been described. Hepatoblastoma is exceptionally rare in adults and can show a variety of histologic patterns which may cause diagnostic difficulty. Pancreatoblastoma, primarily a pediatric tumor, displays acinar differentiation and squamoid nests with other lines of differentiation also present, especially neuroendocrine. Diagnostic approaches for these blastomas include a combination of imaging modalities, histopathological examination, and molecular profiling. The treatment generally involves surgical resection, which may be supplemented by chemotherapy or radiotherapy in some cases. Prognoses vary with gastroblastoma generally showing favorable outcomes post-surgery whereas hepatoblastoma and pancreatoblastoma often have poorer outcomes, particularly in the setting of metastases. This review highlights the complexity of diagnosing and managing these rare adult blastomas as well as the need for ongoing research to better understand their pathogenesis and improve treatment strategies.

11.
Front Vet Sci ; 11: 1369863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605918

RESUMO

Introduction: This study focuses on evaluating the therapeutic efficacy of cecropin AD, an antimicrobial peptide, against H9N2 avian influenza virus (AIV) in chickens. Given the global impact of H9N2 AIV on poultry health, identifying effective treatments is crucial. Methods: To assess the impact of cecropin AD, we conducted in vivo experiments involving 108 5-week-old chickens divided into control, infected, and various treatment groups based on cecropin AD dosage levels (high, medium, and low). The methodologies included hemagglutination (HA) tests for viral titers, histopathological examination and toluidine blue (TB) staining for lung pathology, real-time PCR for viral detection, and enzyme-linked immunosorbent assays for measuring serum levels of inflammatory markers. Results: The findings revealed that cecropin AD substantially reduced lung pathology and viral load, especially at higher dosages, comparing favorably with the effects seen from conventional treatments. Moreover, cecropin AD effectively modulated mast cell activity and the levels of inflammatory markers such as IL-6, TNF-α, IFN-γ, and 5-HT, indicating its potential to diminish inflammation and viral spread. Discussion: Cecropin AD presents a significant potential as an alternative treatment for H9N2 AIV in chickens, as evidenced by its ability to lessen lung damage, decrease viral presence, and adjust immune responses. This positions cecropin AD as a promising candidate for further exploration in the management of H9N2 AIV infections in poultry.

12.
ACS Chem Neurosci ; 15(11): 2223-2232, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38634698

RESUMO

Neuronal death resulting from ischemic stroke is the primary cause of adult mortality and disability, and effective neuroprotective agents for poststroke intervention are still lacking. Remote ischemic postconditioning (RIPostC) has demonstrated significant protective effects against ischemia in various organs; however, the specific mechanisms are not fully understood. This study investigated the potential neuroprotective mechanisms of RIPostC in the context of ischemic stroke. Using a rat model of middle cerebral artery occlusion, we found that RIPostC mitigated neurological damage, improved movement in the open-field test, and protected against neuronal apoptosis. In terms of energy metabolism, RIPostC enhanced ATP levels, suppressed lactate content, and increased the production of ketone bodies (KBs). In the ferroptosis assay, RIPostC protected against lipoperoxidation, reversed the reduction of glutathione peroxidase 4 (GPX4), and mitigated the excessive expression of long-chain acyl-CoA synthetase family member 4 (ACSL4). In oxygen-glucose deprivation/reoxygenation-treated HT22 cells, KBs maintained GPX4 levels, suppressed ACSL4 expression, and preserved the mitochondrial cristae number. However, the effect of KBs on the expression of GPX4, ACSL4, and the number of mitochondrial cristae was blocked by erastin. Moreover, both RIPostC and KBs reduced total iron and ferrous ion content by repressing iron transporters both in vitro and in vivo. In conclusion, KBs-induced mitigation of ferroptosis could represent a new therapeutic mechanism for RIPostC in treating stroke.


Assuntos
Coenzima A Ligases , Ferroptose , Infarto da Artéria Cerebral Média , Pós-Condicionamento Isquêmico , Corpos Cetônicos , Neuroproteção , Ferroptose/fisiologia , Animais , Ratos , Pós-Condicionamento Isquêmico/métodos , Corpos Cetônicos/metabolismo , Masculino , Coenzima A Ligases/metabolismo , Neuroproteção/fisiologia , Ratos Sprague-Dawley , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , AVC Isquêmico/metabolismo , Acidente Vascular Cerebral/metabolismo , Neurônios/metabolismo
13.
World J Gastroenterol ; 30(11): 1497-1523, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617454

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.


Assuntos
Carcinoma , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , MicroRNAs/genética , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Epigenômica
14.
Redox Biol ; 71: 103109, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452521

RESUMO

Cardiac fibrosis is a major public health problem worldwide, with high morbidity and mortality, affecting almost all patients with heart disease worldwide. It is characterized by fibroblast activation, abnormal proliferation, excessive deposition, and abnormal distribution of extracellular matrix (ECM) proteins. The maladaptive process of cardiac fibrosis is complex and often involves multiple mechanisms. With the increasing research on cardiac fibrosis, redox has been recognized as an important part of cardiac remodeling, and an imbalance in redox homeostasis can adversely affect the function and structure of the heart. The metabolism of metal ions is essential for life, and abnormal metabolism of metal ions in cells can impair a variety of biochemical processes, especially redox. However, current research on metal ion metabolism is still very limited. This review comprehensively examines the effects of metal ion (iron, copper, calcium, and zinc) metabolism-mediated redox homeostasis on cardiac fibrosis, outlines possible therapeutic interventions, and addresses ongoing challenges in this rapidly evolving field.


Assuntos
Proteínas da Matriz Extracelular , Humanos , Fibrose , Proteínas da Matriz Extracelular/metabolismo , Homeostase , Oxirredução , Íons
15.
Front Pharmacol ; 15: 1295356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515837

RESUMO

Hyperglycemia in pregnancy can increase the risk of congenital disorders, but little is known about craniofacial skeleton malformation and its corresponding medication. Our study first used meta-analysis to review the previous findings. Second, baicalin, an antioxidant, was chosen to counteract high glucose-induced craniofacial skeleton malformation. Its effectiveness was then tested by exposing chicken embryos to a combination of high glucose (HG, 50 mM) and 6 µM baicalin. Third, whole-mount immunofluorescence staining and in situ hybridization revealed that baicalin administration could reverse HG-inhibited neural crest cells (NCC) delamination and migration through upregulating the expression of Pax7 and Foxd3, and mitigate the disordered epithelial-mesenchymal transition (EMT) process by regulating corresponding adhesion molecules and transcription factors (i.e., E-cadherin, N-cadherin, Cadherin 6B, Slug and Msx1). Finally, through bioinformatic analysis and cellular thermal shift assay, we identified the AKR1B1 gene as a potential target. In summary, these findings suggest that baicalin could be used as a therapeutic agent for high glucose-induced craniofacial skeleton malformation.

16.
Zootaxa ; 5403(4): 447-458, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38480425

RESUMO

The taxonomy of the genus Telostholus (Hymenoptera: Pompilidae: Pompilinae) from China is studied and one species is newly described and illustrated: T. venarectus Song & Ma, sp. nov. Additionally, two species, T. lao and T. malayensis are newly reported from China. A key to the world species of Telostholus is provided.


Assuntos
Himenópteros , Vespas , Animais , China
17.
J Gastrointest Oncol ; 15(1): 468-477, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482229

RESUMO

Background: Given the pivotal role of neuroinflammation in chronic pain and that the paraventricular nucleus of the hypothalamus (PVN) is a crucial brain region involved in visceral pain regulation, we sought to investigate whether the targeted modulation of microglia and astrocytes in the PVN could ameliorate pancreatic cancer-induced visceral pain (PCVP) in mice. Methods: Using a mouse model of PCVP, achieved by tumor cell injection at the head of the pancreas, we measure the number of glial cells, and at the same time we employed minocycline to inhibit microglia and chemogenetic methods to suppress astrocytes in order to investigate the respective roles of microglia and astrocytes within the PVN in PCVP. Results: Mice exhibited visceral pain at 12, 15 and 18 days post-tumor cell injection. We observed a significant increase in the population of both microglia and astrocytes. Inhibition of microglial activity through minocycline microinjection into the PVN resulted in alleviation of visceral pain within 30 and 60 min. Similarly, chemogenetic inhibition of astrocyte function at 14 and 21 days post-injection also led to relief from visceral pain. Conclusions: This study found that PVN microglia and astrocytes were involved in regulating PCVP. Our results suggest that targeting glia may be a potential approach for alleviating visceral pain in patients with pancreatic cancer.

18.
J Gastrointest Oncol ; 15(1): 458-467, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482250

RESUMO

Background: For patients with pancreatic cancer, visceral pain is a debilitating symptom that significantly compromises their quality of life. Unfortunately, the lack of effective treatment options can be attributed to our limited understanding of the neural circuitry underlying this phenomenon. The primary objective of this study is to elucidate the fundamental mechanisms governing visceral pain induced by pancreatic cancer in murine models. Methods: A mouse model of pancreatic cancer visceral pain was established in C57BL/6N mice through the intrapancreatic injection of mPAKPC-luc cells. Abdominal mechanical hyperalgesia and hunch score were employed to evaluate visceral pain, whereas the in vitro electrophysiological patch-clamp technique was utilized to record the electrophysiological activity of GABAergic neurons. Specific neuron ablation and chemogenetics methods were employed to investigate the involvement of GABAergic neurons in pancreatic cancer-induced visceral pain. Results: In vitro electrophysiological results showed that the firing frequency of GABAergic neurons in the paraventricular nucleus of the hypothalamus (PVN) was decreased. Specific destruction of GABAergic neurons in the PVN exacerbated visceral pain induced by pancreatic cancer. Chemogenetics activation of GABAergic neurons in the PVN alleviated visceral pain induced by pancreatic cancer. Conclusions: GABAergic neurons located in PVN play a crucial role in precipitating visceral pain induced by pancreatic cancer in mice, thereby offering novel insights for identifying effective targets to treat pancreatic cancer-related visceral pain.

19.
BMC Womens Health ; 24(1): 141, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402149

RESUMO

OBJECTIVE: Understanding HPV vaccination willingness and its influencing factors among female sex workers (FSWs) in entertainment venues in an urban area of Guangxi, China. METHODS: From 15 August to 15 October 2022, FSWs in entertainment venues with commercial sex trade in an urban area of Guangxi were selected as the study subjects for the questionnaire survey using the method of intentional sampling. The questionnaire based on the information-motivation-behavior (IMB) skills model was used to collect the basic characteristics, HPV and HPV vaccine-related information and cognition, motivation to vaccinate, behavioral skills and willingness to vaccinate from the research targets. A multifactor logistic regression model was used to analyze the factors influencing the research targets' willingness to receive HPV vaccination. RESULTS: Of the 921 research targets, 712 (77.31%) were willing to receive HPV vaccination. The higher the level of knowledge regarding HPV and HPV vaccine-related information, the higher the motivation for HPV vaccination. In addition, the higher the behavioral skills score, the higher the willingness of FSWs in entertainment venues to receive HPV vaccination (P<0.001). FSWs in entertainment venues with lower venue grades [OR(95% CI)=0.693 (0.539, 0.891), P=0.004] were more reluctant to receive HPV vaccination. Those who favored the effectiveness of the vaccine in preventing the disease [OR(95% CI)=2.144 (1.449, 3.174), P<0.001] and those who had heard of HPV vaccine [OR(95% CI)=2.105 (1.451, 3.054), P<0.001], were able to perceive the benefits of HPV vaccination [OR(95% CI)=1.134 (1.045, 1.230), P=0.002]. These individuals acquired greater behavioral skills i.e., self-decision making for HPV vaccination [OR(95% CI)=1.130 (1.008, 1.267), P=0.036] and self-efficacy [OR(95% CI)=1.135 (1.081, 1.191), P<0.001] and they were more willing to receive HPV vaccine. CONCLUSIONS: There was a relatively high HPV vaccination willingness among FSWs in entertainment venues in an urban area of Guangxi, China. Attention should be focused on introducing the benefits of primary prevention measures such as the HPV vaccine for individuals and behavioral skills for HPV vaccination in order to increase their willingness to be vaccinated thus increasing their HPV vaccination rate.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Profissionais do Sexo , Humanos , Feminino , Trabalho Sexual , Motivação , Infecções por Papillomavirus/prevenção & controle , China , Inquéritos e Questionários , Vacinas contra Papillomavirus/uso terapêutico , Vacinação , Conhecimentos, Atitudes e Prática em Saúde , Aceitação pelo Paciente de Cuidados de Saúde
20.
Mol Ther ; 32(4): 878-889, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38311850

RESUMO

Cardiac fibrosis, a crucial pathological characteristic of various cardiac diseases, presents a significant treatment challenge. It involves the deposition of the extracellular matrix (ECM) and is influenced by genetic and epigenetic factors. Prior investigations have predominantly centered on delineating the substantial influence of epigenetic and epitranscriptomic mechanisms in driving the progression of fibrosis. Recent studies have illuminated additional avenues for modulating the progression of fibrosis, offering potential solutions to the challenging issues surrounding fibrosis treatment. In the context of cardiac fibrosis, an intricate interplay exists between m6A epitranscriptomic and epigenetics. This interplay governs various pathophysiological processes: mitochondrial dysfunction, mitochondrial fission, oxidative stress, autophagy, apoptosis, pyroptosis, ferroptosis, cell fate switching, and cell differentiation, all of which affect the advancement of cardiac fibrosis. In this comprehensive review, we meticulously analyze pertinent studies, emphasizing the interplay between m6A epitranscriptomics and partial epigenetics (including histone modifications and noncoding RNA), aiming to provide novel insights for cardiac fibrosis treatment.


Assuntos
Cardiopatias , Humanos , Adenina , Epigênese Genética , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA