Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 42(4): 1600-1614, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742795

RESUMO

Based on the atmospheric pollutant data from twelve monitoring sites in the Guangdong-Hong Kong-Macao Pearl River Delta Regional Air Quality Monitoring Network, the mass concentration trends of atmospheric photochemical oxidants (Ox, NO2+O3) and PM2.5 during 2013-2017 were studied. The complex nonattainment pollution of Ox and PM2.5 is defined as the daily average mass concentration of NO2 and PM2.5 and daily maximum 8 h average (O3 MDA8) mass concentration of O3 simultaneously that exceeds the Chinese grade Ⅱ national air quality standard. The characteristics and meteorological factors that influence the complex nonattainment pollution of Ox and PM2.5 at different types of areas were analyzed. The results indicate that from 2013 to 2017, the annual average mass concentration of PM2.5 in the Pearl River Delta (PRD) region decreased from (44±7) µg·m-3 to (32±4) µg·m-3, which met the annual standard for three consecutive years. The annual average mass concentration of Ox decreased from (127±14) µg·m-3 in 2013 to (114±12) µg·m-3 in 2016 and then showed a general rebound trend to (129±13) µg·m-3 in 2017 when O3 concentrations increased significantly (10 µg·m-3). The proportion of pollution processes with O3 as the primary pollutant increased from 33% in 2013 to 78% in 2017, and the regional characteristics of simultaneous pollution in multiple cities have been highlighted. The complex nonattainment pollution of Ox and PM2.5 occurred 60 times during the study period, primarily in urban sites (78%) and suburban sites (22%). The largest number of days of complex nonattainment pollution occurred in autumn (52%) because of strong solar radiation that was conducive to ozone formation, and consequently, the high oxidization of the atmosphere promoted the secondary generation of PM2.5. The weather conditions that caused the complex nonattainment pollution in the PRD mainly include outflow-high-pressures (43%), subtropical-high-pressures(30%), and tropical-depressions (27%). In terms of specific meteorological conditions, when the temperature was in the range of 20-25℃ and relative humidity was in the range of 60%-75%, the proportion of complex nonattainment pollution was the highest (22%). When O3 pollution was substantial, the high relative humidity and low wind speed during the nighttime caused the concentration of NO2 and PM2.5 to rise significantly, and then the high temperatures during the day aggravated the complex nonattainment pollution.

2.
Ecotoxicol Environ Saf ; 141: 98-106, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28319865

RESUMO

The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 128 surface soil samples from Xiangfen County, northern China. The total mass concentration of these PAHs ranged from 52 to 10,524ng/g, with a mean of 723ng/g. Four-ring PAHs contributed almost 50% of the total PAH burden. A self-organizing map and positive matrix factorization were applied to investigate the spatial distribution and source apportionment of PAHs. Three emission sources of PAHs were identified, namely, coking ovens (21.9%), coal/biomass combustion (60.1%), and anthracene oil (18.0%). High concentrations of low-molecular-weight PAHs were particularly apparent in the coking plant zone in the region around Gucheng Town. High-molecular-weight PAHs mainly originated from coal/biomass combustion around Gucheng Town, Xincheng Town, and Taosi Town. PAHs in the soil of Xiangfen County are unlikely to pose a significant cancer risk for the population.


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Solo/química , Adulto , Antracenos/análise , Criança , China , Carvão Mineral/análise , Humanos , Neoplasias/induzido quimicamente , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco , Poluentes do Solo/toxicidade
3.
Huan Jing Ke Xue ; 34(10): 3788-96, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24364294

RESUMO

The spatial characteristic of non-point source pollution in the Liaohe River was studied. Coupling the remote sensing data and non-point source (NPS) models, a method of assessing NPS pollution by pixel unit was developed, aiming to analyse the NPS pollution characteristic of Liaohe River basin in 2010, in turn to identify the main polluted areas and prevention measures. The work will provide technical supports for pollution prevention in Liaohe River basin. The results showed that in 2010, the total discharge of total nitrogen (TN) was 1.03 x 10(5) t, the total phosphorus (TP) was 6.8 x 10(3) t, the chemical oxygen demand (COD) was 1.31 x 10(5) t and the ammonia nitrogen (NH+4 -N) was 1. 8 x 10(4) t. The main pollution source of NPS was from agriculture. The contributions of NPS pollution to water quality were 67.4% , 76.4% , 39.4% and 21.9% for TN, TP, COD and NH+4 -N, respectively. The south of Liaohe River basin was the most serious polluted area, followed by the northeast areas. In this research, a method was build to estimate the NPS loads based on remote sensing pixel and the spatial characteristic of non-point source pollution in Liaohe River in 2010 was analysed, which will provide support for pollution prevention in Liaohe River.


Assuntos
Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Análise da Demanda Biológica de Oxigênio , China , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Tecnologia de Sensoriamento Remoto , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA