Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 151: 109690, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866347

RESUMO

Leucine is an essential amino acid for fish. The ability of leucine to resist stress in fish has not been reported. Nitrite is a common pollutant in the aquatic environment. Therefore, we investigated the effects of dietary leucine on growth performance and nitrite-induced liver damage, mitochondrial dysfunction, autophagy, and apoptosis for sub-adult grass carp. A total of 450 grass carp (615.91 ± 1.15 g) were selected and randomly placed into 18 net cages. The leucine contents of the six diets were 2.91, 5.90, 8.92, 11.91, 14.93, and 17.92 g/kg, respectively. After a 9-week feeding trial, the nitrite exposure experiment was set up for 96 h. These results indicated that dietary leucine significantly promoted FW, WG, PWG, and SGR of sub-adult grass carp (P < 0.05). Appropriate levels of dietary leucine (11.91-17.92 g/kg) decreased the activities of serum parameters (glucose, cortisol, and methemoglobin contents, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase), the contents of reactive oxygen species (ROS), nitric oxide (NO) and peroxynitrite (ONOO-). In addition, appropriate levels of dietary leucine (11.91-17.92 g/kg) increased the mRNA levels of mitochondrial biogenesis genes (PGC-1α, Nrf1/2, TFAM), fusion-related genes (Opa1, Mfn1/2) (P < 0.05), and decreased the mRNA levels of caspase 3, caspase 8, caspase 9, fission-related gene (Drp1), mitophagy-related genes (Pink1, Parkin) and autophagy-related genes (Beclin1, Ulk1, Atg5, Atg7, Atg12) (P < 0.05). Appropriate levels of dietary leucine (8.92-17.92 g/kg) also increased the protein levels of AMP-activated protein kinase (AMPK), prostacyclin (p62) and decreased the protein levels of protein light chain 3 (LC3), E3 ubiquitin ligase (Parkin), and Cytochrome c (Cytc). Appropriate levels of leucine (8.92-17.92 g/kg) could promote growth performance and alleviate nitrite-induced mitochondrial dysfunction, autophagy, apoptosis for sub-adult grass carp. Based on quadratic regression analysis of PWG and serum GPT activity, dietary leucine requirements of sub-adult grass carp were recommended to be 12.47 g/kg diet and 12.55 g/kg diet, respectively.

2.
Food Chem X ; 22: 101421, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38756468

RESUMO

Muscle is the main edible part of bony fish. The purpose of this study was to investigate the influences of phenylalanine (Phe) on muscle quality, amino acid composition, fatty acid composition, glucose metabolism, and protein deposition in adult grass carp. The diets at 2.30, 4.63, 7.51, 10.97, 13.53, and 17.07 g/kg Phe levels were fed for 9 weeks. The results manifested that Phe (10.97-13.53 g/kg) increased the pH of the fillets and decreased muscle cooking loss and lactic acid content; Phe (7.51-17.07 g/kg) improved the composition of the fillets in terms of flavor (free) amino acids, bound amino acids (especially EAA), and fatty acids (especially EPA and DHA); Phe (7.51-13.53 g/kg) increased muscle glycogen content (possibly related to the AMPK signaling pathway) and muscle protein deposition (possibly related to IGF-1/4EBP1/TOR and AKT/FOXOs signaling pathways). In conclusion, a diet with appropriate Phe levels could improve fillet quality.

3.
Anim Nutr ; 16: 202-217, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362511

RESUMO

Bacterial pathogens destroy the structural integrity of functional organs in fish, leading to severe challenges in the aquaculture industry. Vitamin D3 (VD3) prevents bacterial infections and strengthens immune system function via vitamin D receptor (VDR). However, the correlation between VD3/VDR and the structural integrity of functional organs remains unclarified. This study aimed to investigate the influence of VD3 supplementation on histological characteristics, apoptosis, and tight junction characteristics in fish intestine during pathogen infection. A total of 540 healthy grass carp (257.24 ± 0.63 g) were fed different levels of VD3 (15.2, 364.3, 782.5, 1,167.9, 1,573.8, and 1,980.1 IU/kg) for 70 d. Subsequently, fish were challenged with Aeromonas hydrophila, a pathogen that causes intestinal inflammation. Our present study demonstrated that optimal supplementation with VD3 (1) alleviated intestinal structural damage, and inhibited oxidative damage by reducing levels of oxidative stress biomarkers; (2) attenuated excessive apoptosis-related death receptor and mitochondrial pathway processes in relation to p38 mitogen-activated protein kinase signaling (P < 0.05); (3) enhanced tight junction protein expression by inhibiting myosin light chain kinase signaling (P < 0.05); and (4) elevated VDR isoform expression in fish intestine (P < 0.05). Overall, the results demonstrated that VD3 alleviates oxidative injury, apoptosis, and the destruction of tight junction protein under pathogenic infection, thereby strengthening pathogen defenses in the intestine. This finding supports the rationale for VD3 intervention as an essential practice in sustainable aquaculture.

4.
Anim Nutr ; 15: 22-33, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37771856

RESUMO

Copper (Cu) is a trace element, essential for fish growth. In the current study, in addition to growth performance, we first explored the effects of Cu on collagen synthesis and myofiber growth and development in juvenile grass carp (Ctenopharyngodon idella). A total of 1080 fish (11.16 ± 0.01 g) were randomly divided into 6 treatments (3 replicates per treatment) to receive five doses of organic Cu, which were Cu citrate (CuCit) at 0.99 (basal diet), 2.19, 4.06, 6.15, and 8.07 mg/kg, and one dose of inorganic Cu (CuSO4·5H2O at 3.15 mg/kg), for 9 weeks. The results showed appropriate Cu level (4.06 mg/kg) enhanced growth performance, improved nutritional Cu status, and downregulated Cu-transporting ATPase 1 mRNA levels in the hepatopancreas, intestine, and muscle of juvenile grass carp. Meanwhile, collagen content in fish muscle was increased after Cu intake, which was probably due to the following pathways: (1) activating CTGF/TGF-ß1/Smads signaling pathway to regulate collagen transcription; (2) upregulating of La ribonucleoprotein domain family 6 (LARP6) mRNA levels to regulate translation initiation; (3) increasing proline hydroxylase, lysine hydroxylase, and lysine oxidase activities to regulate posttranslational modifications. In addition, optimal Cu group increased myofiber diameters and the frequency of myofibers with diameter >50 µm, which might be associated with upregulation of cyclin B, cyclin D, cyclin E, proliferating cell nuclear antigen, myogenic determining factor (MyoD), myogenic factor 5, myogenin (MyoG), myogenic regulatory factor 4 and myosin heavy chain (MyHC) and downregulation of myostatin mRNA levels, increasing protein levels of MyoD, MyoG and MyHC in fish muscle. Finally, based on percentage weight gain (PWG), serum ceruloplasmin (Cp) activity and collagen content in fish muscle, Cu requirements were determined as 4.74, 4.37 and 4.62 mg/kg diet (CuCit as Cu source) of juvenile grass carp, respectively. Based on PWG and Cp activity, compared to CuSO4·5H2O, the efficacy of CuCit were 131.80% and 115.38%, respectively. Our findings provide new insights into Cu supplementation to promote muscle growth in fish, and help improve the overall productivity of aquaculture.

5.
Food Chem ; 422: 136223, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121206

RESUMO

To further explain the improvement effect of threonine (Thr) on the fillet quality of fish, a 9-week feeding experiment was conducted. After feeding graded levels of Thr (2.38, 5.38, 8.38, 11.38, 14.38 and 17.38 g/kg), the compositions of fillet hydrolyzed amino acid and fatty acid, and the muscle hardness associated with collagen biosynthesis were mainly analyzed in grass carp (Ctenopharyngodon idella). The results showed that Thr increased the pH value, changed the amino acids and fatty acid composition of fillets, especially essential amino acid (EAA), C22:6n3 (DHA) and C20:5n3 (EPA). Furthermore, this study revealed for the first time that the improvement of muscle hardness by Thr was associated with collagen biosynthesis, and the TGF-ß1/Smads, LARP6a and Hsp47 regulate transcriptional processes, translation initiation and post-translational modifications in collagen biosynthesis, respectively. This study offered a basis for exploring the contribution of Thr in improving muscle quality in sub-adult grass carp.


Assuntos
Carpas , Doenças dos Peixes , Animais , Treonina , Carpas/metabolismo , Dureza , Dieta , Aminoácidos , Músculos/metabolismo , Ácidos Graxos , Colágeno , Ração Animal/análise , Suplementos Nutricionais , Proteínas de Peixes/metabolismo , Imunidade Inata
6.
J Anim Sci Biotechnol ; 14(1): 58, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060042

RESUMO

BACKGROUND: Mannan oligosaccharides (MOS) are recommended as aquaculture additives owing to their excellent antioxidant properties. In the present study, we examined the effects of dietary MOS on the head kidney and spleen of grass carp (Ctenopharyngodon idella) with Aeromonas hydrophila infection. METHODS: A total of 540 grass carp were used for the study. They were administered six gradient dosages of the MOS diet (0, 200, 400, 600, 800, and 1,000 mg/kg) for 60 d. Subsequently, we performed a 14-day Aeromonas hydrophila challenge experiment. The antioxidant capacity of the head kidney and spleen were examined using spectrophotometry, DNA fragmentation, qRT-PCR, and Western blotting. RESULTS: After infection with Aeromonas hydrophila, 400-600 mg/kg MOS supplementation decreased the levels of reactive oxygen species, protein carbonyl, and malonaldehyde and increased the levels of anti-superoxide anion, anti-hydroxyl radical, and glutathione in the head kidney and spleen of grass carp. The activities of copper-zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase were also enhanced by supplementation with 400-600 mg/kg MOS. Furthermore, the expression of most antioxidant enzymes and their corresponding genes increased significantly with supplementation of 200-800 mg/kg MOS. mRNA and protein levels of nuclear factor erythroid 2-related factor 2 also increased following supplementation with 400-600 mg/kg MOS. In addition, supplementation with 400-600 mg/kg MOS reduced excessive apoptosis by inhibiting the death receptor pathway and mitochondrial pathway processes. CONCLUSIONS: Based on the quadratic regression analysis of the above biomarkers (reactive oxygen species, malondialdehyde, and protein carbonyl) of oxidative damage in the head kidney and spleen of on-growing grass carp, the recommended MOS supplementation is 575.21, 557.58, 531.86, 597.35, 570.16, and 553.80 mg/kg, respectively. Collectively, MOS supplementation could alleviate oxidative injury in the head kidney and spleen of grass carp infected with Aeromonas hydrophila.

7.
Front Immunol ; 14: 1095740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865557

RESUMO

Intestinal health is closely associated with overall animal health and performance and, consequently, influences the production efficiency and profit in feed and animal production systems. The gastrointestinal tract (GIT) is the main site of the nutrient digestive process and the largest immune organ in the host, and the gut microbiota colonizing the GIT plays a key role in maintaining intestinal health. Dietary fiber (DF) is a key factor in maintaining normal intestinal function. The biological functioning of DF is mainly achieved by microbial fermentation, which occurs mainly in the distal small and large intestine. Short-chain fatty acids (SCFAs), the main class of microbial fermentation metabolites, are the main energy supply for intestinal cells. SCFAs help to maintain normal intestinal function, induce immunomodulatory effects to prevent inflammation and microbial infection, and are vital for the maintenance of homeostasis. Moreover, because of its distinct characteristics (e.g. solubility), DF is able to alter the composition of the gut microbiota. Therefore, understanding the role that DF plays in modulating gut microbiota, and how it influences intestinal health, is essential. This review gives an overview of DF and its microbial fermentation process, and investigates the effect of DF on the alteration of gut microbiota composition in pigs. The effects of interaction between DF and the gut microbiota, particularly as they relate to SCFA production, on intestinal health are also illustrated.


Assuntos
Microbioma Gastrointestinal , Suínos , Animais , Intestinos , Trato Gastrointestinal , Fibras na Dieta , Nutrientes
8.
Front Immunol ; 13: 1010221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177013

RESUMO

In recent years, mannose oligosaccharide (MOS) as a functional additive is widely used in aquaculture, to enhance fish immunity. An evaluation of the effect of dietary MOS supplementation on the immune barrier function and related signaling molecules mechanism of grass carp (Ctenopharyngodon idella) was undertaken in the present study. Six diets with graded amounts of MOS supplementation (0, 200, 400, 600, 800, and 1000 mg/kg) were fed to 540 grass carp over 60 days. To examine the immune response and potential mechanisms of MOS supplementation on the intestine, a challenge test was conducted using injections of Aeromonas hydrophila for 14 days. Results of the study on the optimal supplementation with MOS were found as follows (1) MOS enhances immunity partly related to increasing antibacterial substances content and antimicrobial peptides expression; (2) MOS attenuates inflammatory response partly related to regulating the dynamic balance of intestinal inflammatory cytokines; (3) MOS regulates immune barrier function may partly be related to modulating TLRs/MyD88/NFκB and TOR/S6K1/4EBP signalling pathways. Finally, the current study concluded that MOS supplementation could improve fish intestinal immune barrier function under Aeromonas hydrophila infected conditions.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Antibacterianos , Carpas/metabolismo , Citocinas/metabolismo , Dieta , Suplementos Nutricionais , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata , Intestinos , Mananas , Manose , Fator 88 de Diferenciação Mieloide/metabolismo , Oligossacarídeos
9.
Front Immunol ; 12: 742107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733280

RESUMO

The objective of this study was to evaluate the efficacy of dietary Mannan oligosaccharides (MOS) supplementation on skin barrier function and the mechanism of on-growing grass carp (Ctenopharyngodon idella). Five hundred forty grass carp were fed for 60 days from the growing stage with six different levels of MOS diets (0, 200, 400, 600, 800, and 1,000 mg kg-1). At the end of the growth trial, the 14-day Aeromonas hydrophila challenge experiment has proceeded. The obtained data indicate that MOS could (1) decline skin lesion morbidity after being challenged by the pathogenic bacteria; (2) maintain physical barrier function via improving antioxidant ability, inhibiting excessive apoptosis, and strengthening the tight junction between the epithelial cell and the related signaling pathway (Nrf2/Keap1, p38MAPK, and MLCK); and (3) regulate immune barrier function by modulating the production of antimicrobial compound and expression of involved cytokines and the related signaling pathway (TOR and NFκB). Finally, we concluded that MOS supplementation reinforced the disease resistance and protected the fish skin barrier function from Aeromonas hydrophila infection.


Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Mananas/farmacologia , Pele/imunologia , Aeromonas hydrophila , Ração Animal , Animais , Doenças dos Peixes/microbiologia , Prebióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA