Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(3): 033103, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012802

RESUMO

Developing the synchrotron radiation experiment method based on combined technology offers more information on the formation mechanism of new materials and their physical and chemical properties. In this study, a new small-angle x-ray scattering/ wide-angle x-ray scattering/ Fourier-transform infrared spectroscopy (SAXS/WAXS/FTIR) combined setup was established. Using this combined SAXS/WAXS/FTIR setup, x-ray and FTIR signals can be obtained simultaneously from the same sample. The in situ sample cell was designed to couple two FTIR optical paths for the attenuated total reflection and transmission modes, which greatly saved the time of adjusting and aligning the external infrared light path when switching between the two modes with good accuracy. A transistor-transistor logic circuit was used to trigger the synchronous acquisition from the IR and x-ray detectors. A special sample stage is designed, allowing access by the IR and x-ray with temperature and pressure control. The newly developed, combined setup can be used to observe the evolution of the microstructure during the synthesis of composite materials in real-time at both the atomic and molecular levels. The crystallization of polyvinylidene fluoride (PVDF) at different temperatures was observed. The time-dependent experimental data demonstrated the success of the in situ SAXS, WAXS, and FTIR study of the structural evolution, which is feasible to track the dynamic processes.

2.
ACS Omega ; 7(50): 47274-47284, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570260

RESUMO

The toxic effect of vincristine on hepatocytes has rarely been studied. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy is a novel technique for investigating drug-cell interaction systems. In this research, the biomolecular alterations in WRL68 cells induced by vincristine treatment were investigated by SR-FTIR microspectroscopy and were further analyzed by multivariate statistical analysis and semiquantitative methods, including principal component analysis (PCA), orthogonal partial least square-discriminant analysis (OPLS-DA), and the peak area ratios of several characteristic IR bands. In vincristine-treated WRL68 cells, alterations in lipid structures and the presence of more long-chain fatty acids were found. A decrease in protein α-helical content relative to ß-sheet structures in vincristine-treated WRL68 cells was identified. The nucleic acid content was decreased relative to that of lipids and proteins in WRL68 cells treated with vincristine. These results provide important information about the toxic effect of vincristine on normal liver cells. This research also provides a new approach to reveal the biomolecular alterations in drug-treated hepatocytes by combining SR-FTIR with multivariate statistical analysis and semiquantitative methods.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121773, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007348

RESUMO

Doxorubicin is an effective chemotherapeutic agent applied in a wide variety of cancers. Despite its potent anticancer activity towards cancer cells, doxorubicin is also toxic to noncancerous cells. Therefore, doxorubicin can cause serious side effects in various organs, especially when dose escalation is required for patients with advanced disease. The liver is the major detoxification organ that metabolizes drugs, and hepatotoxicity is one of the most common adverse effects of doxorubicin administration. However, the exact mechanisms of doxorubicin-induced hepatotoxicity have not been clearly identified, and how doxorubicin treatment affects the biomolecular contents of normal human hepatocytes has rarely been studied. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy is a state-of-the-art analytical technique for characterizing the biomolecules present in cells. In this research, the biomolecular alterations of doxorubicin-treated normal human hepatocytes compared to untreated control cells were investigated at the single-cell level by combining SR-FTIR microspectroscopy with the Cell Counting Kit-8 (CCK-8) assay and flow cytometry. WRL68 human normal embryonic liver cells, which have been shown to be very promising for assessing the cytotoxicity of toxic compounds and investigating hepato-toxicology, were used in this research. Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to further analyse the biomolecular contents of WRL68 cells. The order of lipid acyl chains and protein α-helix structures in doxorubicin-treated WRL68 cells was found to be distinctly changed, while the nucleic acids were altered relatively less. No alteration in the carbohydrate content was distinguishable after doxorubicin treatment. These results provide more comprehensive information about the biomolecular changes in hepatocytes induced by doxorubicin treatment and help to elucidate the mechanism of doxorubicin-induced hepatotoxicity. This research also proves that SR-FTIR microspectroscopy, combined with PCA and OPLS-DA, is a promising approach for investigating drug-cell interaction systems.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Síncrotrons , Doxorrubicina/farmacologia , Análise de Fourier , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120794, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34973610

RESUMO

Gestational diabetes mellitus (GDM) is a common complication during pregnancy. It could cause severe side-effect on the mother's and newborn's heath in the short- and long-term. Prevalence has been increasing over time, likely due to increases in mean maternal age and body weight. However, how GDM affects the placenta structure and function are still unclear. Fourier transform infrared microspectroscopy is well suited to study biological samples, such as tissues and cells. Biomolecules of human tissues have characteristic absorptions in mid-infrared range. In this study, Fourier transform infrared microspectroscopy was used to measure unfixed placental tissue sections from women with GDM and matched controls. The molecular composition of different type of placental tissue sections were further analyzed with principle component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA). The major spectral characteristic of biomolecules in GDM placental tissue and control group were compared. The conformational change of lipid chains and higher level of lipid oxidation were found for placental tissues from GDM pregnancies. The increase of proteins ß-sheet structures relative to the α-helix structures in the GDM placental tissues were also found. The fingerprint region showed the variances of carbohydrates, nucleic acids and phospholipids between GDM and control group placental tissues. These findings are helpful for understanding how GDM affects placenta's biochemical composition and how GDM causes maternal and fetal metabolism changes. This study also provides a new approach to investigating biomolecular composition of samples from GDM pregnancy through spectroscopic method.


Assuntos
Diabetes Gestacional , Feminino , Análise de Fourier , Humanos , Fosfolipídeos , Placenta , Gravidez
5.
Small Methods ; 5(11): e2100690, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34927964

RESUMO

Tunable assembly of cellulose nanocrystals (CNCs) is important for a variety of emerging applications in optics, sensing, and security. Most exploited assembly and optical property of CNCs are cholesteric assembly and corresponding circular dichroism. However, it still remains challenge to obtain homogenous and high-resolution cholesteric assembly. Distinct assembly and optical property of CNCs are highly demanded for advanced photonic materials with novel functions. Herein, a facile and programmable approach for assembling CNCs into a novel concentric alignment using capillary flow and Marangoni effect, which is in strike contrast to conventional cholesteric assembly, is demonstrated. The concentric assembly, as quantitatively evidenced by polarized synchrotron radiation Fourier transform infrared imaging, demonstrates Maltese cross optical pattern with good uniformity and high resolution. Furthermore, this Maltese cross can be readily regulated to "on/off" states by temperature. By combining with 3D inkjet technology, a functional binary system composed of "on"/"off" CNCs optical patterns with high spatial resolution, fast printing speed, good repeatability, and precisely controllable optical property is established for information encryption and decryption. This concentric assembly of CNCs and corresponding tunable optical property emerge as a promising candidate for information security, anticounterfeiting technology, and advanced optics.

6.
Methods Mol Biol ; 2347: 207-219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34472067

RESUMO

The secondary structures of silk fibroin (SF) are critical in the determination of the mechanical properties of the animal silks. Different characterization techniques, such as X-ray diffraction, nuclear magnetic resonance, Raman spectroscopy, and Fourier transform infrared (FTIR) technique, have been applied to study the secondary structure of animal silks. Among these techniques, FTIR is most widely used as it is sensitive to all secondary structures of proteins. Especially with the development of FTIR imaging, it is now possible to image the secondary structures of proteins at the micrometer scale, so as to understand the spatial distribution of proteins and the interaction of proteins with other materials at specific locations of interest. In this chapter, we present the methods and protocols of FTIR imaging to silk protein-based materials. We primarily introduce how to set up the instruments and accessories, as well as how to choose the appropriate imaging methods and sample preparation methods according to sample morphologies. The critical protocols for data analysis are also introduced in the last section.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Materiais Biocompatíveis , Bombyx , Fibroínas , Análise de Fourier , Seda , Difração de Raios X
7.
ACS Omega ; 5(46): 29698-29705, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33251405

RESUMO

Traumatic brain injury (TBI) is a health problem of global concern because of its serious adverse effects on public health and social economy. A technique that can be used to precisely detect TBI is highly demanded. Here, we report on a synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopic imaging technique that can be exploited to identify TBI-induced injury by examining model mouse brain tissue slices. The samples were first examined by conventional histopathological techniques including hematoxylin and eosin (H&E) staining and 2,3,5-triphenyltetrazolium chloride staining and then spectroscopically imaged by SR-FTIR. SR-FTIR results show that the contents of protein and nucleic acid in the injured region are lower than their counterparts in the normal region. The injured and normal regions can be unambiguously distinguished from each other by the principle component analysis of the SR-FTIR spectral data corresponding to protein or nucleic acid. The images built from the spectral data of protein or nucleic acid clearly present the injured region of the brain tissue, which is in good agreement with the H&E staining image and optical image of the sample. Given the label-free and fingerprint features, the demonstrated method suggests potential application of SR-FTIR spectroscopic mapping for the digital and intelligent diagnosis of TBI by providing spatial and chemical information of the sample simultaneously.

8.
Harmful Algae ; 89: 101661, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31672227

RESUMO

Micro-cyanobacteria and pico-cyanobacteria coexist in many lakes throughout the world. Their distinct cell sizes and nutrient utilization strategies may lead to dominance of one over the other at varying nutrient levels. In this study, Microcystis aeruginosa and Synechococcus sp. were chosen as representative organisms of micro- and pico-cyanobacteria, respectively. A series of nitrate and ammonia conditions (0.02, 0.1, 0.5, and 2.5 mg N L-1) were designed in mono- or co-cultured systems, respectively. Growth rates of the two species were calculated and fitted by the Monod and Logistic equations. Furthermore, the interspecific competition was analyzed using the Lotka-Volterra model. In mono-cultures, the two cyanobacteria displayed faster growth rates in ammonia than in nitrate. Meanwhile, Synechococcus sp. showed faster growth rates compared to M. aeruginosa in lower N groups (≤ 0.5 mg N L-1). However, in the highest nitrate treatment (2.5 mg N L-1), M. aeruginosa achieved much higher biomass and faster growth rates than Synechococcus sp.. In co-cultures, Synechococcus sp. dominated in the lowest N treatment (0.02 mg N L-1), but M. aeruginosa dominated under the highest nitrate condition (2.5 mg N L-1). Based on the analysis of Raman spectra of living cells in mono-cultures, nitrate (2.5 mg N L-1) upgraded the pigmentary contents of M. aeruginosa better than ammonia (2.5 mg N L-1), but nitrogen in different forms showed little effects on the pigments of Synechococcus sp.. Findings from this study can provide valuable information to predict cyanobacterial community succession and aquatic ecosystem stability.


Assuntos
Microcystis , Synechococcus , Tamanho Celular , Ecologia , Ecossistema , Nitrogênio
9.
ACS Biomater Sci Eng ; 5(7): 3161-3183, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-33405510

RESUMO

The secondary structures (also termed conformations) of silk fibroin (SF) in animal silk fibers and regenerated SF materials are critical in determining mechanical performance and function of the materials. In order to understand the structure-mechanics-function relationships of silk materials, a variety of advanced infrared spectroscopic techniques, such as micro-infrared spectroscopies (micro-IR spectroscopies for short), synchrotron micro-IR spectroscopy, and nano-infrared spectroscopies (nano-IR spectroscopies for short), have been used to determine the conformations of SF in silk materials. These IR spectroscopic methods provide a useful toolkit to understand conformations and conformational transitions of SF in various silk materials with spatial resolution from the nano-scale to the micro-scale. In this Review, we first summarize progress in understanding the structure and structure-mechanics relationships of silk materials. We then discuss the state-of-the-art micro- and nano-IR spectroscopic techniques used for silk materials characterization. We also provide a systematic discussion of the strategies to collect high-quality spectra and the methods to analyze these spectra. Finally, we demonstrate the challenges and directions for future exploration of silk-based materials with IR spectroscopies.

10.
ACS Nano ; 12(7): 6968-6977, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29932636

RESUMO

Tensan silk, a natural fiber produced by the Japanese oak silk moth ( Antherea yamamai, abbreviated to A. yamamai), features superior characteristics, such as compressive elasticity and chemical resistance, when compared to the more common silk produced from the domesticated silkworm, Bombyx mori ( B. mori). In this study, the "structure-property" relationships within A. yamamai silk are disclosed from the different structural hierarchies, confirming the outstanding toughness as dominated by the distinct mesoscale fibrillar architectures. Inspired by this hierarchical construction, we fabricated A. yamamai silk-like regenerated B. mori silk fibers (RBSFs) with mechanical properties (extensibility and modulus) comparable to natural A. yamamai silk. These RBSFs were further functionalized to form conductive RBSFs that were sensitive to force and temperature stimuli for applications in smart textiles. This study provides a blueprint in exploiting rational designs from A. yamanmai, which is rare and expensive in comparison to the common and cost-effective B. mori silk to empower enhanced material properties.


Assuntos
Fibroínas/química , Seda/química , Têxteis , Animais , Mariposas , Tamanho da Partícula , Propriedades de Superfície
11.
Biochem Biophys Res Commun ; 478(3): 1286-91, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27553281

RESUMO

Human mesenchymal stem cells (hMSCs) have been used as an ideal in vitro model to study human adipogenesis. However, little knowledge of the early stage differentiation greatly hinders our understanding on the mechanism of the adipogenesis processes. In this study, synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy was applied to track the global structural and compositional changes of lipids, proteins and nucleic acids inside individual hMSCs along the time course. The multivariate analysis of the SR-FTIR spectra distinguished the dynamic and significant changes of the lipids and nucleic acid at early differentiation stage. Importantly, changes of lipid structure during early days (Day 1-3) of differentiation might serve as a potential biomarker in identifying the state in early differentiation at single cell level. These results proved that SR-FTIR is a powerful tool to study the stem cell fate determination and early lipogenesis events.


Assuntos
Adipogenia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Microespectrofotometria , Análise de Célula Única/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Adipócitos/citologia , Biomarcadores/análise , Células Cultivadas , Humanos , Lipídeos/análise , Ácidos Nucleicos/análise
12.
J Mater Chem B ; 3(19): 3940-3947, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262616

RESUMO

Animal silks, especially spider dragline silks, have an excellent portfolio of mechanical properties, but it is still a challenge to obtain artificial silk fibers with similar properties to the natural ones. In this paper, we show how to extrude tough regenerated silk fibers by adding a small amount of commercially available functionalized multiwalled carbon nanotubes (less than 1%) through an environmentally friendly wet-spinning process reported by this laboratory previously. Most of the resulting regenerated silk fibers exhibited a breaking energy beyond 130 MJ m-3, which is comparable to spider dragline silks (∼160 MJ m-3). The best of these fibers in terms of performance show a breaking stress of 0.42 GPa, breaking strain of 59%, and breaking energy of 186 MJ m-3. In addition, we used several advanced characterization techniques, such as synchrotron radiation FTIR microspectroscopy and synchrotron radiation X-ray diffraction, to reveal the toughening mechanism in such a protein-inorganic hybrid system. We believe our attempt to produce such tough protein-based hybrid fibers by using cheap, abundant and sustainable regenerated silkworm protein and commercially available functionalized carbon nanotubes, with simplified industrial wet-spinning apparatus, may open up a practical way for the industrial production of super-tough fiber materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA