Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Psychiatr Res ; 177: 75-81, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981411

RESUMO

Delusion is an important feature of schizophrenia, which may stem from cognitive biases. Working memory (WM) is the core foundation of cognition, closely related to delusion. However, the knowledge of neural mechanisms underlying the relationship between WM and delusion in schizophrenia is poorly investigated. Two hundred and thirty patients with schizophrenia (dataset 1: n = 130; dataset 2: n = 100) were enrolled and scanned for an N-back WM task. We constructed the WM-related whole-brain functional connectome and conducted Connectome-based Predictive Modelling (CPM) to detect the delusion-related networks and built the correlation model in dataset 1. The correlation between identified networks and delusion severity was tested in a separate, heterogeneous sample of dataset 2 that mainly includes early-onset schizophrenia. The identified delusion-related network has a strong correlation with delusion severity measured by the NO.20 item of SAPS in dataset 1 (r = 0.433, p = 2.7 × 10-7, permutation-p = 0.035), and can be validated in the same dataset by using another delusion measurement, that is, the P1 item of PANSS (r = 0.362, p = 0.0005). It can be validated in another independent dataset 2 (NO.20 item of SAPS for r = 0.31, p = 0.0024, P1 item of PANSS for r = 0.27, p = 0.0074). The delusion-related network comprises the connections between the default mode network (DMN), cingulo-opercular network (CON), salience network (SN), subcortical, sensory-somatomotor network (SMN), and visual networks. We successfully established correlation models of individualized delusion based on the WM-related functional connectome and showed a strong correlation between delusion severity and connections within the DMN, CON, SMN, and subcortical network.

2.
Front Pharmacol ; 15: 1387123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846088

RESUMO

Early initiation of antipsychotic treatment plays a crucial role in the management of first-episode schizophrenia (FES) patients, significantly improving their prognosis. However, limited attention has been given to the long-term effects of antipsychotic drug therapy on FES patients. In this research, we examined the changes in abnormal brain regions among FES patients undergoing long-term treatment using a dynamic perspective. A total of 98 participants were included in the data analysis, comprising 48 FES patients, 50 healthy controls, 22 patients completed a follow-up period of more than 6 months with qualified data. We processed resting-state fMRI data to calculate coefficient of variation of fractional amplitude of low-frequency fluctuations (CVfALFF), which reflects the brain regional activity stability. Data analysis was performed at baseline and after long-term treatment. We observed that compared with HCs, patients at baseline showed an elevated CVfALFF in the supramarginal gyrus (SMG), parahippocampal gyrus (PHG), caudate, orbital part of inferior frontal gyrus (IOG), insula, and inferior frontal gyrus (IFG). After long-term treatment, the instability in SMG, PHG, caudate, IOG, insula and inferior IFG have ameliorated. Additionally, there was a positive correlation between the decrease in dfALFF in the SMG and the reduction in the SANS total score following long-term treatment. In conclusion, FES patients exhibit unstable regional activity in widespread brain regions at baseline, which can be ameliorated with long-term treatment. Moreover, the extent of amelioration in SMG instability is associated with the amelioration of negative symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA