Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39481645

RESUMO

Tumor-associated macrophages (TAMs) exhibit dual roles in tumor progression. TAMs are known to induce PD-L1 expression in cancer cells. However, the regulatory effects of PD-L1 in melanoma cells on TAM phenotypical switching remain underexplored. Herein, our findings indicated that CD163 and MRC1 levels were significantly elevated in metastatic melanomas compared to primary melanomas, correlating with CD274 expression and predicted patient clinical outcomes. To study the mechanisms regulating M2-like polarization, PD-L1 was knocked out in both YUMM1.7 and B16-F10 melanoma cells. The data revealed that knocking out PD-L1 (PD-L1KO) in melanoma resulted in a decelerated in vivo growth rate, accompanied by a significantly increased M1/M2 ratio, more dendritic cells, and enhanced activation of CD8+ T cells compared to wild-type (WT) melanoma cells. These alterations were associated with decreased expression of M2-associated chemokines (CCL2, CCL3, and CXCL2) and cytokines (IL6, IL10, and TGFß1). Mice harboring PD-L1KO melanomas exhibited elevated levels of CD8+ T cells in both the tumor-draining lymph nodes and the bloodstream, compared to mice with PD-L1WT melanomas. Treatment with extracellular vesicles (EVs) derived from PD-L1KO melanoma resulted in a reduced tumor growth rate and fewer M2-like macrophages in the tumors compared to EVs from PD-L1WT melanomas. Therefore, our data suggest that PD-L1 in melanoma and melanoma-derived EVs induces M2-like polarization, contributing to local and regional immune suppression.

2.
Nat Mater ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223270

RESUMO

Nanoparticles are promising for drug delivery applications, with several clinically approved products. However, attaining high nanoparticle accumulation in solid tumours remains challenging. Here we show that tumour cell-derived small extracellular vesicles (sEVs) block nanoparticle delivery to tumours, unveiling another barrier to nanoparticle-based tumour therapy. Tumour cells secrete large amounts of sEVs in the tumour microenvironment, which then bind to nanoparticles entering tumour tissue and traffic them to liver Kupffer cells for degradation. Knockdown of Rab27a, a gene that controls sEV secretion, decreases sEV levels and improves nanoparticle accumulation in tumour tissue. The therapeutic efficacy of messenger RNAs encoding tumour suppressing and proinflammatory proteins is greatly improved when co-encapsulated with Rab27a small interfering RNA in lipid nanoparticles. Together, our results demonstrate that tumour cell-derived sEVs act as a defence system against nanoparticle tumour delivery and that this system may be a potential target for improving nanoparticle-based tumour therapies.

3.
Pediatr Res ; 96(5): 1210-1219, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38710942

RESUMO

BACKGROUND: This study aims to investigate the role of endoplasmic reticulum stress (ER stress) in human dermal lymphatic endothelial cells (HDLECs) and lymphatic malformations (LMs) and its relationship with aerobic glycolysis and inflammation. METHODS: The proliferation and apoptosis of HDLECs were examined with lipopolysaccharide (LPS) treatment. ER stress-associated proteins and glycolysis-related markers were detected by western blot. Glycolysis indexes were detected by seahorse analysis and lactic acid production assay kits. Immunohistochemistry was used to reveal the ER stress state of lymphatic endothelial cells (LECs) in LMs. RESULTS: LPS induced ER stress in HDLECs but did not trigger detectable apoptosis. Intriguingly, LPS-treated HDLECs also showed increased glycolysis flux. Knockdown of Hexokinase 2, a key enzyme for aerobic glycolysis, significantly inhibited the ability of HDLECs to resist ER stress-induced apoptosis. Moreover, compared to normal skin, glucose-regulated protein 78 (GRP78/BIP), and phosphorylation protein kinase R-like kinase (p-PERK), two key ER stress-associated markers, were upregulated in LECs of LMs, which was correlated with the inflected state. In addition, excessively activated ER stress inhibited the progression of LMs in rat models. CONCLUSIONS: These data indicate that glycolysis could rescue activated ER stress in HDLECs, which is required for the accelerated development of LMs. IMPACT: Inflammation enhances both ER stress and glycolysis in LECs while glycolysis is required to attenuate the pro-apoptotic effect of ER stress. Endoplasmic reticulum (ER) stress is activated in lymphatic endothelial cells (LECs) of LMs, especially in inflammatory condition. The expression of ER stress-related proteins is increased in LMs and correlated with Hexokinase 2 expression. Pharmacological activation of ER stress suppresses the formation of LM lesions in the rat model. ER stress may be a promising and effective therapeutic target for the treatment of LMs.


Assuntos
Apoptose , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Células Endoteliais , Glicólise , Hexoquinase , Humanos , Animais , Chaperona BiP do Retículo Endoplasmático/metabolismo , Células Endoteliais/metabolismo , Hexoquinase/metabolismo , Ratos , Anormalidades Linfáticas/metabolismo , Anormalidades Linfáticas/patologia , Lipopolissacarídeos/farmacologia , Masculino , Proliferação de Células , eIF-2 Quinase/metabolismo , Inflamação/metabolismo , Células Cultivadas , Ratos Sprague-Dawley , Modelos Animais de Doenças , Proteínas de Choque Térmico/metabolismo
4.
Cell Rep ; 42(11): 113352, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37948180

RESUMO

By sorting receptor tyrosine kinases into endolysosomes, the endosomal sorting complexes required for transport (ESCRTs) are thought to attenuate oncogenic signaling in tumor cells. Paradoxically, ESCRT members are upregulated in tumors. Here, we show that disruption of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a pivotal ESCRT component, inhibited tumor growth by promoting CD8+ T cell infiltration in melanoma and colon cancer mouse models. HRS ablation led to misfolded protein accumulation and triggered endoplasmic reticulum (ER) stress, resulting in the activation of the type I interferon pathway in an inositol-requiring enzyme-1α (IRE1α)/X-box binding protein 1 (XBP1)-dependent manner. HRS was upregulated in tumor cells with high tumor mutational burden (TMB). HRS expression associates with the response to PD-L1/PD-1 blockade therapy in melanoma patients with high TMB tumors. HRS ablation sensitized anti-PD-1 treatment in mouse melanoma models. Our study shows a mechanism by which tumor cells with high TMB evade immune surveillance and suggests HRS as a promising target to improve immunotherapy.


Assuntos
Melanoma , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/metabolismo , Proteostase , Evasão Tumoral , Melanoma/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Interferons/metabolismo
5.
Cell Rep ; 42(10): 113224, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37805922

RESUMO

Macrophages play a pivotal role in tumor immunity. We report that reprogramming of macrophages to tumor-associated macrophages (TAMs) promotes the secretion of exosomes. Mechanistically, increased exosome secretion is driven by MADD, which is phosphorylated by Akt upon TAM induction and activates Rab27a. TAM exosomes carry high levels of programmed death-ligand 1 (PD-L1) and potently suppress the proliferation and function of CD8+ T cells. Analysis of patient melanoma tissues indicates that TAM exosomes contribute significantly to CD8+ T cell suppression. Single-cell RNA sequencing analysis showed that exosome-related genes are highly expressed in macrophages in melanoma; TAM-specific RAB27A expression inversely correlates with CD8+ T cell infiltration. In a murine melanoma model, lipid nanoparticle delivery of small interfering RNAs (siRNAs) targeting macrophage RAB27A led to better T cell activation and sensitized tumors to anti-programmed cell death protein 1 (PD-1) treatment. Our study demonstrates tumors use TAM exosomes to combat CD8 T cells and suggests targeting TAM exosomes as a potential strategy to improve immunotherapies.


Assuntos
Exossomos , Melanoma , Humanos , Camundongos , Animais , Macrófagos Associados a Tumor/metabolismo , Linfócitos T CD8-Positivos , Regulação para Cima , Exossomos/metabolismo , RNA Interferente Pequeno/metabolismo , Melanoma/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Antígeno B7-H1/metabolismo
6.
Nat Commun ; 14(1): 5110, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607999

RESUMO

The desmoplastic stroma in solid tumors presents a formidable challenge to immunotherapies that rely on endogenous or adoptively transferred T cells, however, the mechanisms are poorly understood. To define mechanisms involved, here we treat established desmoplastic pancreatic tumors with CAR T cells directed to fibroblast activation protein (FAP), an enzyme highly overexpressed on a subset of cancer-associated fibroblasts (CAFs). Depletion of FAP+ CAFs results in loss of the structural integrity of desmoplastic matrix. This renders these highly treatment-resistant cancers susceptible to subsequent treatment with a tumor antigen (mesothelin)-targeted CAR T cells and to anti-PD-1 antibody therapy. Mechanisms include overcoming stroma-dependent restriction of T cell extravasation and/or perivascular invasion, reversing immune exclusion, relieving T cell suppression, and altering the immune landscape by reducing myeloid cell accumulation and increasing endogenous CD8+ T cell and NK cell infiltration. These data provide strong rationale for combining tumor stroma- and malignant cell-targeted therapies to be tested in clinical trials.


Assuntos
Terapia de Imunossupressão , Neoplasias Pancreáticas , Humanos , Imunoterapia , Movimento Celular , Neoplasias Pancreáticas/terapia , Linfócitos T CD8-Positivos
7.
Acta Pharm Sin B ; 13(4): 1429-1437, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139433

RESUMO

Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts' lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies.

8.
Cancer Res ; 83(16): 2790-2806, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37115855

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable success in the treatment of hematologic malignancies. Unfortunately, it has limited efficacy against solid tumors, even when the targeted antigens are well expressed. A better understanding of the underlying mechanisms of CAR T-cell therapy resistance in solid tumors is necessary to develop strategies to improve efficacy. Here we report that solid tumors release small extracellular vesicles (sEV) that carry both targeted tumor antigens and the immune checkpoint protein PD-L1. These sEVs acted as cell-free functional units to preferentially interact with cognate CAR T cells and efficiently inhibited their proliferation, migration, and function. In syngeneic mouse tumor models, blocking tumor sEV secretion not only boosted the infiltration and antitumor activity of CAR T cells but also improved endogenous antitumor immunity. These results suggest that solid tumors use sEVs as an active defense mechanism to resist CAR T cells and implicate tumor sEVs as a potential therapeutic target to optimize CAR T-cell therapy against solid tumors. SIGNIFICANCE: Small extracellular vesicles secreted by solid tumors inhibit CAR T cells, which provide a molecular explanation for CAR T-cell resistance and suggests that strategies targeting exosome secretion may enhance CAR T-cell efficacy. See related commentary by Ortiz-Espinosa and Srivastava, p. 2637.


Assuntos
Vesículas Extracelulares , Neoplasias , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias/metabolismo , Linfócitos T , Imunoterapia Adotiva/métodos , Antígenos de Neoplasias , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Receptores de Antígenos de Linfócitos T
9.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37090547

RESUMO

The desmoplastic stroma in solid tumors presents a formidable challenge to immunotherapies that rely on endogenous or adoptively transferred T cells, however, the mechanisms are poorly understood. To define mechanisms involved, we treat established desmoplastic pancreatic tumors with CAR T cells directed to fibroblast activation protein (FAP), an enzyme highly overexpressed on a subset of cancer-associated fibroblasts (CAFs). Depletion of FAP+CAFs results in loss of the structural integrity of desmoplastic matrix. This renders these highly treatment-resistant cancers susceptible to subsequent treatment with a tumor antigen (mesothelin)-targeted CAR and to anti-PD1 antibody therapy. Mechanisms include overcoming stroma-dependent restriction of T cell extravasation and/or perivascular invasion, reversing immune exclusion, relieving T cell suppression, and altering the immune landscape by reducing myeloid cell accumulation and increasing endogenous CD8+ T cell and NK cell infiltration. These data provide strong rationale for combining tumor stroma- and malignant cell-targeted therapies to be tested in clinical trials.

10.
Am J Pathol ; 193(3): 286-295, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36509120

RESUMO

Local aggressive growth of odontogenic keratocysts (OKCs) can cause serious bone destruction, even resulting in pathologic fractures of the mandible. The mechanism of osteoclastogenesis in OKCs was explored by investigating the role of programmed cell death ligand 1 (PD-L1), a key immune checkpoint, in OKCs and its relationship with the M2 isoform of pyruvate kinase (PKM2), a key enzyme of glycolysis. The data from immunohistochemistry, real-time quantitative PCR, Western blot, and flow cytometry indicated that the expression level of PD-L1 was significantly increased in the stroma and fibroblasts of OKCs (OKC-Fs) when compared with oral mucosa. Double-labeling staining demonstrated that osteoclasts in OKCs spatially interacted with PD-L1-positive OKC-Fs. Exogenous expression of PD-L1 in OKC-Fs promoted osteoclastogenesis when OKC-Fs were co-cultured with osteoclast precursors (RAW264.7 cells). Because OKC-Fs exhibit energy dependency and acquire energy from PKM2-mediated glycolysis, this study generated stable PKM2 knockdown OKC-Fs using shRNAs against PKM2, and found that PD-L1 expression level was decreased by PKM2 knockdown. Furthermore, Spearman rank correlation analysis showed that there was a positive correlation between the immunostaining of PKM2 and PD-L1 in OKC samples. In addition, double-labeling immunofluorescence showed colocalizations between PKM2 and PD-L1 in the fibrous tissue walls of OKCs. In conclusion, PD-L1 in fibroblasts promotes osteoclastogenesis in OKCs, which is regulated by PKM2.


Assuntos
Cistos Odontogênicos , Osteogênese , Humanos , Apoptose , Antígeno B7-H1 , Ligantes , Cistos Odontogênicos/patologia , Células RAW 264.7 , Animais , Camundongos
11.
Blood Cancer Discov ; 4(1): 5-7, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36455131

RESUMO

Cancer cells need to evade the immune system for their progression. In this issue of Blood Cancer Discovery, Gargiulo and colleagues report that in a mouse model of chronic lymphocytic leukemia, small extracellular vesicles inhibit antitumor immunity by altering CD8 T-cell transcriptome, proteome, and metabolome. See related article by Gargiulo et al., p. 54 (9).


Assuntos
Leucemia Linfocítica Crônica de Células B , Camundongos , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia
12.
Biochem Pharmacol ; 204: 115227, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36027925

RESUMO

Glycolysis is activated in lymphatic endothelial cells and contributes to the development of lymphatic malformations (LMs). Bleomycin (BLM) is the most wildly used sclerosant for LMs, but its mechanisms are unclear. Here, our data showed that BLM suppressed the glycolysis of human dermal lymphatic endothelial cells (HDLECs) via inhibiting the expression and nucleus translocation of pyruvate kinase M2 isoform (PKM2) and inhibited dimeric PKM2 formation. Furthermore, the proliferation of LM lesions was inhibited by BLM through the down-regulation of nuclear PKM2 in the rat model. Additionally, PKM2, especially the nuclear PKM2 along with Ki-67, was inhibited in the lymphatic vessels of BLM-treated LMs. Our findings provide a new molecular mechanism of BLM in LM sclerotherapy treatment.


Assuntos
Células Endoteliais , Piruvato Quinase , Animais , Bleomicina/farmacologia , Proliferação de Células , Células Endoteliais/metabolismo , Glicólise/fisiologia , Humanos , Antígeno Ki-67/metabolismo , Piruvato Quinase/metabolismo , Ratos , Soluções Esclerosantes/farmacologia
13.
Anal Chem ; 94(11): 4570-4575, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35257583

RESUMO

Mechanical forces have profound effects on the morphology and migration of cells in a two-dimensional environment. However, cells in vivo mostly migrate in three-dimensional space while physically constrained, and the mechanism by which cellular dynamic forces drive migration in this confined environment is unclear. Here, we present a method of fabricating microfluidic chips with integrated DNA-based tension probes to measure spatiotemporal variations in integrin-mediated force exerted during confined cell migration. Using this developed device, we measured the spatial locations, magnitudes, and temporal characteristics of integrin-ligand tension signals in motile cells in different microchannels and found that cells exerted less force and underwent increasingly transitory integrin-ligand interactions when migrating in confined spaces. This study demonstrates that the described method provides insights into understanding the migratory machinery of cells in geometrically confined environment that better mimics physiological conditions.


Assuntos
DNA , Integrinas , Movimento Celular , Sondas de DNA , Ligantes
14.
Dev Cell ; 57(3): 329-343.e7, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35085484

RESUMO

Tumor-derived extracellular vesicles (TEVs) suppress the proliferation and cytotoxicity of CD8+ T cells, thereby contributing to tumor immune evasion. Here, we report that the adhesion molecule intercellular adhesion molecule 1 (ICAM-1) co-localizes with programmed death ligand 1 (PD-L1) on the exosomes; both ICAM-1 and PD-L1 are upregulated by interferon-γ. Exosomal ICAM-1 interacts with LFA-1, which is upregulated in activated T cells. Blocking ICAM-1 on TEVs reduces the interaction of TEVs with CD8+ T cells and attenuates PD-L1-mediated suppressive effects of TEVs. During this study, we have established an extracellular vesicle-target cell interaction detection through SorTagging (ETIDS) system to assess the interaction between a TEV ligand and its target cell receptor. Using this system, we demonstrate that the interaction of TEV PD-L1 with programmed cell death 1 (PD-1) on T cells is significantly reduced in the absence of ICAM-1. Our study demonstrates that ICAM-1-LFA-1-mediated adhesion between TEVs and T cells is a prerequisite for exosomal PD-L1-mediated immune suppression.


Assuntos
Exossomos/metabolismo , Terapia de Imunossupressão , Molécula 1 de Adesão Intercelular/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Interferon gama/farmacologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
Am J Pathol ; 191(5): 857-871, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640318

RESUMO

To investigate the role of glycolysis and the M2 isoform of pyruvate kinase (PKM2) in odontogenic keratocysts (OKCs), the glycolytic flux of primary odontogenic keratocyst fibroblasts (OKC-Fs) and normal oral mucosa fibroblasts (OM-Fs) was determined by glucose uptake, lactate production, and cell proliferation assays. Wound healing assay and Matrigel-coated chamber system were used to investigate the effects of PKM2 on migration and invasion capacities of OKC-Fs. Co-culture of OKC-Fs with osteoclast precursors (RAW264.7 cells) was used to clarify the role of glycolysis in the osteoclastogenic effects of OKC-Fs. In addition, hypoxia-inducible factor 1α and some key enzymes related to glycolysis, including PKM2, 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3, hexokinase 2, and lactate dehydrogenase A, were detected to assess the activation of glycolysis in OKC stroma by immunohistochemistry. Results showed that the glucose uptake and lactate production were significantly higher in OKC-Fs than OM-Fs. PKM2 was elevated in OKC-Fs compared with that in OM-Fs. PKM2 significantly regulated glycolysis, proliferation, migration, invasion, and osteoclastogenic effects of OKC-Fs. Additionally hypoxia-inducible factor 1α, 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3, hexokinase 2, and lactate dehydrogenase A were markedly overexpressed in OKC stroma, and correlated with PKM2. Moreover, the expression of PKM2 was regulated by oxygen concentration in vitro. In sum, PKM2-mediated glycolysis regulated the growth, aggressiveness, and osteoclastogenesis of OKC.


Assuntos
Glicólise , Cistos Odontogênicos/enzimologia , Osteogênese , Piruvato Quinase/metabolismo , Animais , Movimento Celular , Proliferação de Células , Fibroblastos/enzimologia , Fibroblastos/patologia , Humanos , Camundongos , Invasividade Neoplásica , Cistos Odontogênicos/patologia , Oxigênio/metabolismo , Isoformas de Proteínas , Piruvato Quinase/genética , Células RAW 264.7
16.
Pediatr Res ; 89(1): 110-117, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32279070

RESUMO

BACKGROUND: To investigate whether the YAP/TAZ (Yes-associated protein/transcriptional coactivator with PDZ binding motif) pathway contributes to the pathogenesis of lymphatic malformations (LMs). METHODS: YAP, TAZ, CTGF (connective tissue growth factor), and Ki-67 were detected in LMs by immunohistochemistry. The colocalization of YAP and Ki-67 was analyzed by double immunofluorescence. Pearson's correlation and cluster analyses were performed to analyze the relationships between these proteins. Human dermal lymphatic endothelial cells (HDLECs) were used for mechanistic investigation. Rat models of LMs were established to investigate the role of the YAP pathway in LM development. RESULTS: Compared with those in normal skin, the expression levels of YAP, TAZ, CTGF, and Ki-67 were significantly upregulated in lymphatic endothelial cells (LECs) of LMs. Interestingly, YAP and CTGF presented much higher expression levels in infected LMs. In experiments in vitro, lipopolysaccharide (LPS) enhanced the expression of YAP in a concentration- and time-dependent manner via the increased phosphorylation of Erk1/2 (extracellular signal-regulated kinase 1/2). Moreover, the proliferation, invasion, and tubule formation of HDLECs increased significantly in accordance with the activation of the YAP signaling pathway. Furthermore, LM rat models validated that LPS facilitated the development of LMs, which was dependent on the activation of YAP. CONCLUSIONS: The data reveal that activation of the YAP signaling pathway in LECs may play a crucial role in the progression of LMs. IMPACT: Compared with that in normal skin, the YAP signaling pathway was activated in LECs of LMs. Inhibiting the YAP signaling pathway attenuated the proliferation, invasion, and tubule formation of HDLECs. Additionally, the activation of the YAP signaling pathway could promote LM development in a rat model. Activation of the YAP signaling pathway in LECs may play a crucial role in the progression of LMs. The YAP signaling pathway was activated in LMs. Inhibition of the YAP signaling pathway could promote regression of the lesions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfangiogênese , Anormalidades Linfáticas/metabolismo , Vasos Linfáticos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Antígeno Ki-67/metabolismo , Linfangiogênese/efeitos dos fármacos , Anormalidades Linfáticas/genética , Anormalidades Linfáticas/patologia , Anormalidades Linfáticas/prevenção & controle , Vasos Linfáticos/anormalidades , Vasos Linfáticos/efeitos dos fármacos , Ratos , Transdução de Sinais , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Verteporfina/farmacologia , Proteínas de Sinalização YAP
17.
Am J Pathol ; 191(1): 204-215, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130045

RESUMO

Metabolism plays a pivotal role in the formation of the lymphatic vasculature. Pyruvate kinase M2 (PKM2) is typically a metabolic marker of proliferating cells and maintains the growth of vascular endothelial cells. In this study, the potential status of PKM2 in lymphatic endothelial cells and the pathogenesis of lymphatic malformations (LMs) was investigated. The glycolysis index, including glucose uptake, ATP, and lactate production, stayed at a relatively high level in human dermal lymphatic endothelial cells (HDLECs) compared with human umbilical vein endothelial cells, whereas the inhibition of PKM2 by shikonin or PKM2 knockdown significantly suppressed glycolysis, migration, tubular formation, and invasion of HDLECs. Moreover, compared with lymphatic vessels in healthy skin, lymphatic vessels of LMs expressed PKM2 highly, and this expression correlated with infection of LMs. Meanwhile, the overexpression of PKM2 in HDLECs strengthened the proliferation, migration, tubular formation, and invasion of HDLECs. The findings from further experiments in a rat LM model support that targeting PKM2 by shikonin significantly impedes the progression of LMs, even in an infected LM rat model. Taken together, these results indicate that PKM2 plays a pivotal role in the activation of LECs and promotes the progression of LMs, whereas the inhibition of PKM2 can effectively suppress the pathogenesis of LM lesions in the rat model.


Assuntos
Células Endoteliais/enzimologia , Anormalidades Linfáticas/enzimologia , Vasos Linfáticos/anormalidades , Piruvato Quinase/metabolismo , Animais , Feminino , Glicólise/fisiologia , Humanos , Vasos Linfáticos/enzimologia , Ratos , Ratos Wistar
18.
J Histochem Cytochem ; 67(11): 801-812, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31424999

RESUMO

The aim of this study was to investigate the expression of the activating transcription factor 4 (ATF4) in odontogenic keratocysts (OKC), its association with hypoxia and M2-polarized macrophages infiltration, and its potential relationships with angiogenesis in OKC. The expression of ATF4, hypoxia-inducible factor 1α (HIF-1α), macrophage colony-stimulating factor (M-CSF), and receptor activator of nuclear factor κ-B ligand (RANKL) in OKC samples and normal oral mucosa (OM) was detected by immunohistochemistry. Meanwhile, microvessel density (MVD) was measured using antibody against CD31. M2-polarized macrophages were identified using double-staining for CD68+ and CD163+. The correlations of ATF4 with HIF-1α, M-CSF, and M2-polarized macrophages infiltration were determined by Spearman's rank correlation test and hierarchical clustering. Human immortalized oral epithelial cells (HIOECs) were used in in vitro experiments. Our data showed that the expression of HIF-1α, ATF4, and M-CSF was significantly upregulated in the epithelium of OKC when compared with the OM. The expression of ATF4 was positively correlated with that of HIF-1α, M-CSF, MVD, and M2-polarized macrophages infiltration. Elevated expression of ATF4 in the epithelial lining of OKC may facilitate the M2 macrophages infiltration in response to hypoxia, leading to the development of OKC.


Assuntos
Fator 4 Ativador da Transcrição/análise , Hipóxia/patologia , Macrófagos/patologia , Cistos Odontogênicos/patologia , Fator 4 Ativador da Transcrição/genética , Adulto , Idoso , Células Cultivadas , Células Epiteliais/patologia , Feminino , Humanos , Hipóxia/complicações , Hipóxia/genética , Masculino , Pessoa de Meia-Idade , Cistos Odontogênicos/complicações , Cistos Odontogênicos/genética , Regulação para Cima , Adulto Jovem
19.
J Mol Histol ; 50(4): 325-333, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31115840

RESUMO

Odontogenic keratocysts (OKCs) are jaw cystic lesions which are characterized by local invasion and high recurrence rate. The majority of OKCs are exposed to microorganisms and occur along with focal inflammatory infiltrates. Cyst fluids are biological fluids that contain a large content of cytokines and immune globulins. Inhibitory receptor such as programmed death receptor 1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1), which can induce a coinhibitory signal in activated T cells, plays a vital role in the differentiation, exhaustion and apoptosis of T cells. Cell derived microvesicles, carrying a cargo of functional proteins, nucleic acids and lipids, are important communication tools in the development of diseases. However, the expression of PD-L1 in OKCs tissues and whether PD-L1 could be carried by microvesicles are unexplored. Presently, we have isolated cyst fluid microvesicles and identified cell derived PD-L1+ cyst fluid microvesicles. PD-L1 was located in the membrane of the cyst fluid microvesicles. The main cellular origins of PD-L1+ cyst fluid microvesicles were dendritic cells followed by lymphocytes. Elevated PD-L1+ cyst fluid microvesicles were detected in the OKCs compared with dentigerous cysts. Isolated cyst fluid microvesicles could bind to the membrane of activated CD8 T cells and inhibit proliferation of stimulated peripheral blood CD8 T cells. In conclusion, the present study suggests that elevated PD-L1+ cyst fluid microvesicles might be related with the cyst development of OKCs.


Assuntos
Antígeno B7-H1/análise , Líquido Cístico/química , Cistos Odontogênicos/química , Antígeno B7-H1/metabolismo , Micropartículas Derivadas de Células , Células Dendríticas/química , Humanos , Imuno-Histoquímica , Linfócitos/química
20.
Shanghai Kou Qiang Yi Xue ; 28(1): 97-99, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-31081010

RESUMO

PURPOSE: To analyse the imaging features of odontogenic keratocysts (OKCs) associated with an impacted tooth. METHODS: Clinical and radiological data of 235 cases with OKCs were respectively investigated, with emphasis on imaging features of 36 OKCs, which were associated with an unerupted tooth. RESULTS: In 36 cases of OKCs associated with an impacted tooth, the ratio of male to female was 1.77:1, and molar-ramus was involved in 26 cases (72.22%). OKCs in association with an unerupted tooth occurred mostly in patients ranging from 20 to 30 years (19 cases, 52.8%). There were 27 cases (75%) of unilocular and 9 cases (25%) multilocualr radiolucency. Thirteen cases (36.11%) were related to the crown of the impacted teeth, and the unerupted teeth also were impacted as a result of malposition in which the entire teeth appeared to be enveloped by cysts (15 cases, 41.67%), or adjacent to cyst wall (8 cases, 22.22%). CONCLUSIONS: Radiographically, one of the most imaging features of OKCs in association with an unerupted tooth is that its entire tooth appears to be enveloped by cyst or adjacent to cyst, while pericoronal radiolucencies surrounding an impacted tooth are rarely seen.


Assuntos
Cistos Odontogênicos , Tumores Odontogênicos , Dente Impactado , Feminino , Humanos , Masculino , Cistos Odontogênicos/diagnóstico , Cistos Odontogênicos/terapia , Tumores Odontogênicos/diagnóstico por imagem , Tumores Odontogênicos/terapia , Radiografia , Coroa do Dente , Dente Impactado/diagnóstico por imagem , Dente Impactado/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA