Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell Rep ; 42(12): 113286, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995179

RESUMO

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer and presents clinically with a high degree of biological heterogeneity and distinct clinical outcomes. The current paradigm of LUAD etiology posits alveolar epithelial type II (AT2) cells as the primary cell of origin, while the role of AT1 cells in LUAD oncogenesis remains unknown. Here, we examine oncogenic transformation in mouse Gram-domain containing 2 (Gramd2)+ AT1 cells via oncogenic KRASG12D. Activation of KRASG12D in AT1 cells induces multifocal LUAD, primarily of papillary histology. Furthermore, KRT8+ intermediate cell states were observed in both AT2- and AT1-derived LUAD, but SCGB3A2+, another intermediate cell marker, was primarily associated with AT1 cells, suggesting different mechanisms of tumor evolution. Collectively, our study reveals that Gramd2+ AT1 cells can serve as a cell of origin for LUAD and suggests that distinct subtypes of LUAD based on cell of origin be considered in the development of therapeutics.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
2.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905051

RESUMO

Alveolar epithelial regeneration is critical for normal lung function and becomes dysregulated in disease. While alveolar type 2 (AT2) and club cells are known distal lung epithelial progenitors, determining if alveolar epithelial type 1 (AT1) cells also contribute to alveolar regeneration has been hampered by lack of highly specific mouse models labeling AT1 cells. To address this, the Gramd2 CreERT2 transgenic strain was generated and crossed to Rosa mTmG mice. Extensive cellular characterization, including distal lung immunofluorescence and cytospin staining, confirmed that GRAMD2 + AT1 cells are highly enriched for green fluorescent protein (GFP). Interestingly, Gramd2 CreERT2 GFP + cells were able to form organoids in organoid co-culture with Mlg fibroblasts. Temporal scRNAseq revealed that Gramd2 + AT1 cells transition through numerous intermediate lung epithelial cell states including basal, secretory and AT2 cell in organoids while acquiring proliferative capacity. Our results indicate that Gramd2 + AT1 cells are highly plastic suggesting they may contribute to alveolar regeneration.

3.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398026

RESUMO

Lymphangioleiomyomatosis (LAM) is a debilitating, progressive lung disease with few therapeutic options, largely due to a paucity of mechanistic knowledge of disease pathogenesis. Lymphatic endothelial cells (LECs) are known to envelope and invade clusters of LAM-cells, comprising of smooth muscle α-actin and/or HMB-45 positive "smooth muscle-like cells" however the role of LECs in LAM pathogenesis is still unknown. To address this critical knowledge gap, we investigated wether LECs interact with LAM-cells to augment their metastatic behaviour of LAM-cells. We performed in situ spatialomics and identified a core of transcriptomically related cells within the LAM nodules. Pathway analysis highlights wound and pulmonary healing, VEGF signaling, extracellular matrix/actin cytoskeletal regulating and the HOTAIR regulatory pathway enriched in the LAM Core cells. We developed an organoid co-culture model combining primary LAM-cells with LECs and applied this to evaluate invasion, migration, and the impact of Sorafenib, a multi-kinase inhibitor. LAM-LEC organoids had significantly higher extracellular matrix invasion, decreased solidity and a greater perimeter, reflecting increased invasion compared to non-LAM control smooth muscle cells. Sorafenib significantly inhibited this invasion in both LAM spheroids and LAM-LEC organoids compared to their respective controls. We identified TGFß1ι1, a molecular adapter coordinating protein-protein interactions at the focal adhesion complex and known to regulate VEGF, TGFß and Wnt signalling, as a Sorafenib-regulated kinase in LAM-cells. In conclusion we have developed a novel 3D co-culture LAM model and have demonstrated the effectiveness of Sorafenib to inhibit LAM-cell invasion, identifying new avenues for therapeutic intervention.

4.
Stem Cells ; 40(7): 691-703, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35429397

RESUMO

Lung maturation is not limited to proper structural development but also includes differentiation and functionality of various highly specialized alveolar cell types. Alveolar type 1 (AT1s) cells occupy nearly 95% of the alveolar surface and are critical for establishing efficient gas exchange in the mature lung. AT1 cells arise from progenitors specified during the embryonic stage as well as alveolar epithelial progenitors expressing surfactant protein C (Sftpcpos cells) during postnatal and adult stages. Previously, we found that Wnt5a, a non-canonical Wnt ligand, is required for differentiation of AT1 cells during the saccular phase of lung development. To further investigate the role of Wnt5a in AT1 cell differentiation, we generated and characterized a conditional Wnt5a gain-of-function mouse model. Neonatal Wnt5a gain-of-function disrupted alveologenesis through inhibition of cell proliferation. In this setting Wnt5a downregulated ß-catenin-dependent canonical Wnt signaling, repressed AT2 (anti-AT2) and promoted AT1 (pro-AT1) lineage-specific gene expression. In addition, we identified 2 subpopulations of Sftpchigh and Sftpclow alveolar epithelial cells. In Sftpclow cells, Wnt5a exhibits pro-AT1 and anti-AT2 effects, concurrent with inhibition of canonical Wnt signaling. Interestingly, in the Sftpchigh subpopulation, although increasing AT1 lineage-specific gene expression, Wnt5a gain-of-function did not change AT2 gene expression, nor inhibit canonical Wnt signaling. Using primary epithelial cells isolated from human fetal lungs, we demonstrate that this property of Wnt5a is evolutionarily conserved. Wnt5a therefore serves as a selective regulator that ensures proper AT1/AT2 balance in the developing lung.


Assuntos
Células Epiteliais Alveolares , Via de Sinalização Wnt , Células Epiteliais Alveolares/metabolismo , Animais , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Recém-Nascido , Camundongos , Via de Sinalização Wnt/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
5.
Cells ; 11(7)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35406686

RESUMO

NKX2.1 is a master regulator of lung morphogenesis and cell specification; however, interactions of NKX2.1 with various transcription factors to regulate cell-specific gene expression and cell fate in the distal lung remain incompletely understood. FOXO1 is a key regulator of stem/progenitor cell maintenance/differentiation in several tissues but its role in the regulation of lung alveolar epithelial progenitor homeostasis has not been evaluated. We identified a novel role for FOXO1 in alveolar epithelial cell (AEC) differentiation that results in the removal of NKX2.1 from surfactant gene promoters and the subsequent loss of surfactant expression in alveolar epithelial type I-like (AT1-like) cells. We found that the FOXO1 forkhead domain potentiates a loss of surfactant gene expression through an interaction with the NKX2.1 homeodomain, disrupting NKX2.1 binding to the SFTPC promoter. In addition, blocking PI-3K/AKT signaling reduces phosphorylated FOXO-1 (p-FOXO1), allowing accumulated nuclear FOXO1 to interact with NKX2.1 in differentiating AEC. Inhibiting AEC differentiation in vitro with keratinocyte growth factor (KGF) maintained an AT2 cell phenotype through increased PI3K/AKT-mediated FOXO1 phosphorylation, resulting in higher levels of surfactant expression. Together these results indicate that FOXO1 plays a central role in AEC differentiation by directly binding NKX2.1 and suggests an essential role for FOXO1 in mediating AEC homeostasis.


Assuntos
Células Epiteliais Alveolares , Surfactantes Pulmonares , Células Epiteliais Alveolares/metabolismo , Células Epiteliais/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Surfactantes Pulmonares/metabolismo , Tensoativos/metabolismo
6.
iScience ; 25(2): 103780, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35169685

RESUMO

Many acute and chronic diseases affect the distal lung alveoli. Alveolar epithelial cell (AEC) lines are needed to better model these diseases. We used de-identified human remnant transplant lungs to develop a method to establish AEC lines. The lines grow well in 2-dimensional (2D) culture as epithelial monolayers expressing lung progenitor markers. In 3-dimensional (3D) culture with fibroblasts, Matrigel, and specific media conditions, the cells form alveolar-like organoids expressing mature AEC markers including aquaporin 5 (AQP5), G-protein-coupled receptor class C group 5 member A (GPRC5A), and surface marker HTII280. Single-cell RNA sequencing of an AEC line in 2D versus 3D culture revealed increased cellular heterogeneity and induction of cytokine and lipoprotein signaling in 3D organoids. Our approach yields lung progenitor lines that retain the ability to differentiate along the alveolar cell lineage despite long-term expansion and provides a valuable system to model and study the distal lung in vitro.

7.
Oncogene ; 40(20): 3624-3632, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33931739

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide and KRAS is the most commonly mutated gene in lung adenocarcinoma (LUAD). The 78-kDa glucose-regulated protein GRP78/BiP is a key endoplasmic reticulum chaperone protein and a major pro-survival effector of the unfolded protein response (UPR). Analysis of the Cancer Genome Atlas database and immunostain of patient tissues revealed that compared to normal lung, GRP78 expression is generally elevated in human lung cancers, including tumors bearing the KRASG12D mutation. To test the requirement of GRP78 in human lung oncogenesis, we generated mouse models containing floxed Grp78 and Kras Lox-Stop-Lox G12D (KrasLSL-G12D) alleles. Simultaneous activation of the KrasG12D allele and knockout of the Grp78 alleles were achieved in the whole lung or selectively in lung alveolar epithelial type 2 cells known to be precursors for adenomas that progress to LUAD. Here we report that GRP78 haploinsufficiency is sufficient to suppress KrasG12D-mediated lung tumor progression and prolong survival. Furthermore, GRP78 knockdown in human lung cancer cell line A427 (KrasG12D/+) leads to activation of UPR and apoptotic markers and loss of cell viability. Our studies provide evidence that targeting GRP78 represents a novel therapeutic approach to suppress mutant KRAS-mediated lung tumorigenesis.


Assuntos
Chaperona BiP do Retículo Endoplasmático/metabolismo , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Resposta a Proteínas não Dobradas , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Chaperona BiP do Retículo Endoplasmático/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais
8.
Front Psychiatry ; 12: 648896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868056

RESUMO

Background: The factors associated with sleep disturbances in cancer patients remains unclear. This study aimed to explore the prevalence of sleep disorders and predictors associated with sleep disturbance in cancer patients from a radiotherapy department. Methods: Patients with cancers were recruited before the start of radiotherapy from our institution between January 2019 and February 2020. Pittsburgh Sleep Quality Index (PSQI) scale was used to assess sleep quality. Descriptive statistics, Chi-square test, and multivariate logistic regression analysis were used to conduct statistical analysis. Results: A total of 330 eligible patients were included. Of them, 38.3% (n = 127) had the globe PSQI score >7, indicating that they suffered from sleep disorders. Patients with lung cancer (45.2%) were more likely to suffer from sleep disturbance, followed by cervical cancer (43.8%), nasopharyngeal carcinoma (41.7%), esophageal cancer (41.5%), breast cancer (37.7%), and colorectal cancer (30%). With regard to the PSQI components, the mean sleep duration was 8 h, 20.3% (n = 67) of them reported poor subjective sleep quality, 6.1% (n = 20) needed medication to improve sleep, and 53.6% (n = 177) suffered daytime dysfunction. Multivariate logistic regression models showed body mass index (BMI) ≥ 20 kg/m2 [odds ratio (OR) 0.599, 95% confidence interval (CI) 0.329-0.948, P = 0.031] and the receipt of surgery (OR 0.507, 95% CI 0.258-0.996, P = 0.048) were the significant favorable predictors for sleep disturbance, while age, gender, marital status, education level, comorbidity, metastasis status, diagnostic status, and cancer type were not significantly associated with sleep disturbance. Conclusions: Approximately 40% of the cancer patients suffer from sleep disturbance before the start of radiotherapy. Patients with BMI ≥ 20 kg/m2 and receiving surgery are less likely to develop sleep disturbance in comparison with others.

10.
Cells ; 9(11)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187367

RESUMO

Molecular and functional characterization of alveolar epithelial type I (AT1) cells has been challenging due to difficulty in isolating sufficient numbers of viable cells. Here we performed single-cell RNA-sequencing (scRNA-seq) of tdTomato+ cells from lungs of AT1 cell-specific Aqp5-Cre-IRES-DsRed (ACID);R26tdTomato reporter mice. Following enzymatic digestion, CD31-CD45-E-cadherin+tdTomato+ cells were subjected to fluorescence-activated cell sorting (FACS) followed by scRNA-seq. Cell identity was confirmed by immunofluorescence using cell type-specific antibodies. After quality control, 92 cells were analyzed. Most cells expressed 'conventional' AT1 cell markers (Aqp5, Pdpn, Hopx, Ager), with heterogeneous expression within this population. The remaining cells expressed AT2, club, basal or ciliated cell markers. Integration with public datasets identified three robust AT1 cell- and lung-enriched genes, Ager, Rtkn2 and Gprc5a, that were conserved across species. GPRC5A co-localized with HOPX and was not expressed in AT2 or airway cells in mouse, rat and human lung. GPRC5A co-localized with AQP5 but not pro-SPC or CC10 in mouse lung epithelial cell cytospins. We enriched mouse AT1 cells to perform molecular phenotyping using scRNA-seq. Further characterization of putative AT1 cell-enriched genes revealed GPRC5A as a conserved AT1 cell surface marker that may be useful for AT1 cell isolation.


Assuntos
Células Epiteliais Alveolares/metabolismo , Aquaporina 5/metabolismo , Membrana Celular/metabolismo , Pulmão/citologia , Receptores Acoplados a Proteínas G/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Animais , Biomarcadores/metabolismo , Separação Celular , Humanos , Camundongos Transgênicos , Ratos , Reprodutibilidade dos Testes
11.
PLoS Genet ; 16(9): e1009023, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925947

RESUMO

Lung cancer is the leading cause of cancer-related death and lung adenocarcinoma is its most common subtype. Although genetic alterations have been identified as drivers in subsets of lung adenocarcinoma, they do not fully explain tumor development. Epigenetic alterations have been implicated in the pathogenesis of tumors. To identify epigenetic alterations driving lung adenocarcinoma, we used an improved version of the Tracing Enhancer Networks using Epigenetic Traits method (TENET 2.0) in primary normal lung and lung adenocarcinoma cells. We found over 32,000 enhancers that appear differentially activated between normal lung and lung adenocarcinoma. Among the identified transcriptional regulators inactivated in lung adenocarcinoma vs. normal lung, NKX2-1 was linked to a large number of silenced enhancers. Among the activated transcriptional regulators identified, CENPA, FOXM1, and MYBL2 were linked to numerous cancer-specific enhancers. High expression of CENPA, FOXM1, and MYBL2 is particularly observed in a subgroup of lung adenocarcinomas and is associated with poor patient survival. Notably, CENPA, FOXM1, and MYBL2 are also key regulators of cancer-specific enhancers in breast adenocarcinoma of the basal subtype, but they are associated with distinct sets of activated enhancers. We identified individual lung adenocarcinoma enhancers linked to CENPA, FOXM1, or MYBL2 that were associated with poor patient survival. Knockdown experiments of FOXM1 and MYBL2 suggest that these factors regulate genes involved in controlling cell cycle progression and cell division. For example, we found that expression of TK1, a potential target gene of a MYBL2-linked enhancer, is associated with poor patient survival. Identification and characterization of key transcriptional regulators and associated enhancers in lung adenocarcinoma provides important insights into the deregulation of lung adenocarcinoma epigenomes, highlighting novel potential targets for clinical intervention.


Assuntos
Adenocarcinoma de Pulmão/genética , Epigênese Genética/genética , Elementos Reguladores de Transcrição/genética , Adenocarcinoma/genética , Adulto , Idoso , Proteínas de Ciclo Celular/genética , Epigenômica , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Homeobox , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Sequências Reguladoras de Ácido Nucleico/genética
12.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L173-L184, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432919

RESUMO

The alveolar epithelium is comprised of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells, the latter being capable of self-renewal and transdifferentiation into AT1 cells for normal maintenance and restoration of epithelial integrity following injury. MicroRNAs (miRNAs) are critical regulators of several biological processes, including cell differentiation; however, their role in establishment/maintenance of cellular identity in adult alveolar epithelium is not well understood. To investigate this question, we performed genome-wide analysis of sequential changes in miRNA and gene expression profiles using a well-established model in which human AT2 (hAT2) cells transdifferentiate into AT1-like cells over time in culture that recapitulates many aspects of transdifferentiation in vivo. We defined three phases of miRNA expression during the transdifferentiation process as "early," "late," and "consistently" changed, which were further subclassified as up- or downregulated. miRNAs with altered expression at all time points during transdifferentiation were the largest subgroup, suggesting the need for consistent regulation of signaling pathways to mediate this process. Target prediction analysis and integration with previously published gene expression data identified glucocorticoid signaling as the top pathway regulated by miRNAs. Serum/glucocorticoid-regulated kinase 1 (SGK1) emerged as a central regulatory factor, whose downregulation correlated temporally with gain of hsa-miR-424 and hsa-miR-503 expression. Functional validation demonstrated specific targeting of these miRNAs to the 3'-untranslated region of SGK1. These data demonstrate the time-related contribution of miRNAs to the alveolar transdifferentiation process and suggest that inhibition of glucocorticoid signaling is necessary to achieve the AT1-like cell phenotype.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Genoma Humano , MicroRNAs/metabolismo , Alvéolos Pulmonares/metabolismo , Transcriptoma/genética , Sequência de Bases , Diferenciação Celular/genética , Linhagem Celular , Transdiferenciação Celular/genética , Regulação da Expressão Gênica , Glucocorticoides/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/metabolismo
13.
Cells ; 9(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046118

RESUMO

WNT5a is a mainly "non-canonical" WNT ligand whose dysregulation is observed in lung diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and asthma. Germline deletion of Wnt5a disrupts embryonic lung development. However, the temporal-specific function of WNT5a remains unknown. In this study, we generated a conditional loss-of-function mouse model (Wnt5aCAG) and examined the specific role of Wnt5a during the saccular and alveolar phases of lung development. The lack of Wnt5a in the saccular phase blocked distal airway expansion and attenuated differentiation of endothelial and alveolar epithelial type I (AT1) cells and myofibroblasts. Postnatal Wnt5a inactivation disrupted alveologenesis, producing a phenotype resembling human bronchopulmonary dysplasia (BPD). Mutant lungs showed hypoalveolization, but endothelial and epithelial differentiation was unaffected. The major impact of Wnt5a inactivation on alveologenesis was on myofibroblast differentiation and migration, with reduced expression of key regulatory genes. These findings were validated in vitro using isolated lung fibroblasts. Conditional inactivation of the WNT5a receptors Ror1 and Ror2 in alveolar myofibroblasts recapitulated the Wnt5aCAG phenotype, demonstrating that myofibroblast defects are the major cause of arrested alveologenesis in Wnt5aCAG lungs. Finally, we show that WNT5a is reduced in human BPD lung samples, indicating the clinical relevance and potential role for WNT5a in pathogenesis of BPD.


Assuntos
Organogênese , Alvéolos Pulmonares/embriologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais , Proteína Wnt-5a/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Movimento Celular , Células Cultivadas , Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Camundongos , Modelos Biológicos , Miofibroblastos/citologia
14.
Am J Respir Crit Care Med ; 201(2): 198-211, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31738079

RESUMO

Rationale: Alveolar epithelial cell (AEC) injury and dysregulated repair are implicated in the pathogenesis of pulmonary fibrosis. Endoplasmic reticulum (ER) stress in AEC has been observed in idiopathic pulmonary fibrosis (IPF), a disease of aging.Objectives: To investigate a causal role for ER stress in the pathogenesis of pulmonary fibrosis (PF) and therapeutic potential of ER stress inhibition in PF.Methods: The role of ER stress in AEC dysfunction and fibrosis was studied in mice with tamoxifen (Tmx)-inducible deletion of ER chaperone Grp78, a key regulator of ER homeostasis, in alveolar type II (AT2) cells, progenitors of distal lung epithelium, and in IPF lung slice cultures.Measurements and Main Results:Grp78 deletion caused weight loss, mortality, lung inflammation, and spatially heterogeneous fibrosis characterized by fibroblastic foci, hyperplastic AT2 cells, and increased susceptibility of old and male mice, all features of IPF. Fibrosis was more persistent in more severely injured Grp78 knockout (KO) mice. Grp78 KO AT2 cells showed evidence of ER stress, apoptosis, senescence, impaired progenitor capacity, and activation of TGF-ß (transforming growth factor-ß)/SMAD signaling. Glucose-regulated protein 78 is reduced in AT2 cells from old mice and patients with IPF, and ER stress inhibitor tauroursodeoxycholic acid ameliorates ER stress and fibrosis in Grp78 KO mouse and IPF lung slice cultures.Conclusions: These results support a causal role for ER stress and resulting epithelial dysfunction in PF and suggest ER stress as a potential mechanism linking aging to IPF. Modulation of ER stress and chaperone function may offer a promising therapeutic approach for pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Fibrose Pulmonar/genética , Células-Tronco/metabolismo , Fatores Etários , Células Epiteliais Alveolares/patologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/genética , Senescência Celular/genética , Dasatinibe/farmacologia , Chaperona BiP do Retículo Endoplasmático , Técnicas de Inativação de Genes , Proteínas de Choque Térmico/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/efeitos dos fármacos , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Quercetina/farmacologia , Quinolinas/farmacologia , Proteínas Smad/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Fator de Transcrição CHOP/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Fator de Crescimento Transformador beta/metabolismo
15.
Cell Mol Life Sci ; 76(23): 4663-4672, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31332482

RESUMO

Claudins are a family of integral tight junction proteins that regulate paracellular permeability in polarized epithelia. Overexpression or reduction of claudins can both promote and limit cancer progression, revealing complex dichotomous roles for claudins depending on cellular context. In contrast, recent studies demonstrating tumor formation in claudin knockout mouse models indicate a role for several claudin family members in suppressing tumor initiation. For example, intestine-specific claudin-7 knockout mice spontaneously develop atypical hyperplasia and intestinal adenomas, while claudin-18 knockout mice develop carcinomas in the lung and stomach. Claudin-4, -11, and -15 knockout mice show increased cell proliferation and/or hyperplasia in urothelium, Sertoli cells, and small intestinal crypts, respectively, possibly a precursor to cancer development. Pathways implicated in both cell proliferation and tumorigenesis include Yap/Taz and insulin-like growth factor-1 receptor (IGF-1R)/Akt pathways, among others. Consistent with the tumor suppressive role of claudins shown in mice, in humans, claudin-low breast cancer has been described as a distinct entity with a poor prognosis, and claudin-18-Rho GTPase activating protein 26 (CLDN18-ARHGAP26) fusion protein as a driver gene aberration in diffuse-type gastric cancer due to effects on RhoA. Paradoxically, claudins have also garnered interest as targets for therapy, as they are sometimes aberrantly expressed in cancer cells, which may or may not promote cancer progression. For example, a chimeric monoclonal antibody which targets cells expressing claudin-18.2 through antibody-dependent cell-mediated cytotoxicity has shown promise in multiple phase II studies. In this review, we focus on new findings supporting a tumor suppressive role for claudins during cancer initiation.


Assuntos
Claudinas/genética , Neoplasias/etiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Carcinogênese , Claudinas/metabolismo , Camundongos , Camundongos Knockout , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo
16.
Cancer Res ; 79(12): 3050-3062, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30796052

RESUMO

Lung cancer is the leading cause of cancer-related death in the United States. Long noncoding RNAs (lncRNA) are a class of regulatory molecules whose role in lung carcinogenesis is poorly understood. In this study, we profiled lncRNA expression in lung adenocarcinoma (LUAD) cell lines, compared their expression with that of purified alveolar epithelial type II cells (the purported cell of origin for LUAD), cross-referenced these with lncRNAs altered in the primary human tumors, and interrogated for lncRNAs whose expression correlated with patient survival. We identified LINC00261, a lncRNA with unknown function in LUAD, adjacent to the pioneering transcription factor FOXA2. Loss of LINC00261 was observed in multiple tumor types, including liver, breast, and gastric cancer. Reintroduction of LINC00261 into human LUAD cell lines inhibited cell migration and slowed proliferation by inducing G2-M cell-cycle arrest, while upregulating DNA damage pathway genes and inducing phosphorylation-mediated activation of components of the DNA damage pathway. FOXA2 was able to induce LINC00261 expression, and the entire locus underwent hypermethylation in LUAD, leading to loss of expression. We have thus identified an epigenetically deregulated lncRNA, whose loss of expression in LUAD promotes the malignant phenotype and blocks activation of the DNA damage machinery, predisposing lung cells to cancer development. SIGNIFICANCE: These findings identify LINC00261 as a tumor suppressor that blocks cellular proliferation by activating the DNA damage response and suggest that epigenetic therapy to inhibit DNA methylation may enhance treatment of LUAD. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3050/F1.large.jpg.See related commentary by Davalos and Esteller, p. 3028.


Assuntos
Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Proliferação de Células , Dano ao DNA , Genes Supressores de Tumor , Humanos
17.
Int J Cancer ; 143(12): 3169-3180, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30325015

RESUMO

Claudins are a family of transmembrane proteins integral to the structure and function of tight junctions (TJ). Disruption of TJ and alterations in claudin expression are important features of invasive and metastatic cancer cells. Expression of CLDN18.1, the lung-specific isoform of CLDN18, is markedly decreased in lung adenocarcinoma (LuAd). Furthermore, we recently observed that aged Cldn18 -/- mice have increased propensity to develop LuAd. We now demonstrate that CLDN18.1 expression correlates inversely with promoter methylation and with LuAd patient mortality. In addition, when restored in LuAd cells that have lost expression, CLDN18.1 markedly attenuates malignant properties including xenograft tumor growth in vivo as well as cell proliferation, migration, invasion and anchorage-independent colony formation in vitro. Based on high throughput analyses of Cldn18 -/- murine lung alveolar epithelial type II cells, as well as CLDN18.1-repleted human LuAd cells, we hypothesized and subsequently confirmed by Western analysis that CLDN18.1 inhibits insulin-like growth factor-1 receptor (IGF-1R) and AKT phosphorylation. Consistent with recent data in Cldn18 -/- knockout mice, expression of CLDN18.1 in human LuAd cells also decreased expression of transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) and their target genes, contributing to its tumor suppressor activity. Moreover, analysis of LuAd cells in which YAP and/or TAZ are silenced with siRNA suggests that inhibition of TAZ, and possibly YAP, is also involved in CLDN18.1-mediated AKT inactivation. Taken together, these data indicate a tumor suppressor role for CLDN18.1 in LuAd mediated by a regulatory network that encompasses YAP/TAZ, IGF-1R and AKT signaling.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Claudinas/fisiologia , Neoplasias Pulmonares/metabolismo , Transdução de Sinais/fisiologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Western Blotting , Proliferação de Células , Claudinas/genética , Metilação de DNA , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Invasividade Neoplásica , Metástase Neoplásica , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-yes/metabolismo , Receptor IGF Tipo 1/metabolismo , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
18.
Epigenomics ; 10(9): 1167-1187, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212242

RESUMO

AIM: To identify functional lung adenocarcinoma (LUAD) risk SNPs. MATERIALS & METHODS: Eighteen validated LUAD risk SNPs (p ≤ 5 × 10-8) and 930 SNPs in high linkage disequilibrium (r2 > 0.5) were integrated with epigenomic information from primary human alveolar epithelial cells. Enhancer-associated SNPs likely affecting transcription factor-binding sites were predicted. Three SNPs were functionally investigated using luciferase assays, expression quantitative trait loci and cancer-specific expression. RESULTS: Forty-seven SNPs mapped to putative enhancers; 11 located to open chromatin. Of these, seven altered predicted transcription factor-binding motifs. Rs6942067 showed allele-specific luciferase expression and expression quantitative trait loci analysis indicates that it influences expression of DCBLD1, a gene that encodes an unknown membrane protein and is overexpressed in LUAD. CONCLUSION: Integration of candidate LUAD risk SNPS with epigenomic marks from normal alveolar epithelium identified numerous candidate functional LUAD risk SNPs including rs6942067, which appears to affect DCBLD1 expression. Data deposition: Data are provided in GEO record GSE84273.


Assuntos
Adenocarcinoma/genética , Células Epiteliais Alveolares/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Células Epiteliais Alveolares/citologia , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Masculino , Proteínas de Membrana/biossíntese , Pessoa de Meia-Idade , Locos de Características Quantitativas
19.
J Clin Invest ; 128(3): 970-984, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400695

RESUMO

Claudins, the integral tight junction (TJ) proteins that regulate paracellular permeability and cell polarity, are frequently dysregulated in cancer; however, their role in neoplastic progression is unclear. Here, we demonstrated that knockout of Cldn18, a claudin family member highly expressed in lung alveolar epithelium, leads to lung enlargement, parenchymal expansion, increased abundance and proliferation of known distal lung progenitors, the alveolar epithelial type II (AT2) cells, activation of Yes-associated protein (YAP), increased organ size, and tumorigenesis in mice. Inhibition of YAP decreased proliferation and colony-forming efficiency (CFE) of Cldn18-/- AT2 cells and prevented increased lung size, while CLDN18 overexpression decreased YAP nuclear localization, cell proliferation, CFE, and YAP transcriptional activity. CLDN18 and YAP interacted and colocalized at cell-cell contacts, while loss of CLDN18 decreased YAP interaction with Hippo kinases p-LATS1/2. Additionally, Cldn18-/- mice had increased propensity to develop lung adenocarcinomas (LuAd) with age, and human LuAd showed stage-dependent reduction of CLDN18.1. These results establish CLDN18 as a regulator of YAP activity that serves to restrict organ size, progenitor cell proliferation, and tumorigenesis, and suggest a mechanism whereby TJ disruption may promote progenitor proliferation to enhance repair following injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Claudinas/metabolismo , Pulmão/metabolismo , Fosfoproteínas/metabolismo , Células-Tronco/metabolismo , Adenocarcinoma/metabolismo , Animais , Carcinogênese , Proteínas de Ciclo Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Genótipo , Homeostase , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Neoplasias/metabolismo , Fatores de Transcrição , Proteínas de Sinalização YAP
20.
Hum Mol Genet ; 26(15): 3014-3027, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854564

RESUMO

Smoking-associated DNA hypomethylation has been observed in blood cells and linked to lung cancer risk. However, its cause and mechanistic relationship to lung cancer remain unclear. We studied the association between tobacco smoking and epigenome-wide methylation in non-tumor lung (NTL) tissue from 237 lung cancer cases in the Environment And Genetics in Lung cancer Etiology study, using the Infinium HumanMethylation450 BeadChip. We identified seven smoking-associated hypomethylated CpGs (P < 1.0 × 10-7), which were replicated in NTL data from The Cancer Genome Atlas. Five of these loci were previously reported as hypomethylated in smokers' blood, suggesting that blood-based biomarkers can reflect changes in the target tissue for these loci. Four CpGs border sequences carrying aryl hydrocarbon receptor binding sites and enhancer-specific histone modifications in primary alveolar epithelium and A549 lung adenocarcinoma cells. A549 cell exposure to cigarette smoke condensate increased these enhancer marks significantly and stimulated expression of predicted target xenobiotic response-related genes AHRR (P = 1.13 × 10-62) and CYP1B1 (P < 2.49 × 10-61). Expression of both genes was linked to smoking-related transversion mutations in lung tumors. Thus, smoking-associated hypomethylation may be a consequence of enhancer activation, revealing environmentally-induced regulatory elements implicated in lung carcinogenesis.


Assuntos
Ilhas de CpG/genética , Neoplasias Pulmonares/genética , Fumar/efeitos adversos , Células A549/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores Tumorais/sangue , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Metilação de DNA/genética , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Epigenômica/métodos , Estudo de Associação Genômica Ampla , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fumar/genética , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA