Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 13(6): 1892-1905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064870

RESUMO

Regulatory T cells (Tregs) are critical for generating and maintaining peripheral tolerance. Treg-based immunotherapy is valuable for the clinical management of diseases resulting from dysregulation of immune tolerance. However, the lack of potency is a potential limitation of Treg therapy. In addition, CD69 positive-Treg (CD69+ Treg) represent a newly identified subset of Tregs with potent immune suppressive capability. Methods: Foxp3 YFP-Cre CD69 fl/fl and CD4 Cre CD69 fl/fl mice were generated to determine the relevance of CD69 to Treg. Chromatin Immunoprecipitation Assay (ChIP) and luciferase Assay were performed to detect the regulation of CD69 transcription by heat shock transcription factor 1(HSF1). Gene expression was measured by western blotting and qRT-PCR. The differentiation of naive T cells to CD69+Foxp3+ iTregs was determined by flow cytometry. The immunosuppressive ability of Tregs was analyzed by ELISA and flow cytometry. Colon inflammation in mice was reflected by changes in body weight and colon length, the disease activity index (DAI), and H&E staining of colon tissues. Results: Induced Tregs (iTregs) from CD4 Cre CD69 fl/fl mice failed to alleviate colitis. The transcription factor HSF1 interacted with the promoter of the CD69 gene to prompt its transcription during Treg differentiation. Genetic and chemical inhibition of HSF1 impaired CD69+ Treg differentiation and promoted the pathogenesis of colitis in mice. In contrast, HSF1 protein stabilized by inhibiting its proteasomal degradation promoted CD69+ Treg differentiation and alleviated colitis in mice. Moreover, adoptive transfer of iTregs with HSF1 stabilization by proteasome inhibitor (PSI) dramatically prevented the development of colitis in mice and was accompanied by decreased production of pro-inflammatory cytokines and reduced accumulation of pro-inflammatory lymphocytes in colitis tissue, whereas Tregs induced in the absence of PSI were less stable and ineffective in suppressing colitis. Conclusions: HSF1 promotes CD69+ Tregs differentiation by activating the CD69 transcription, which is critical for the immunosuppressive function of Tregs. Stabilization of HSF1 by PSIs results in the efficient generation of Tregs with high potency to treat colitis and probably other autoimmune diseases involving Tregs deficiency.


Assuntos
Colite , Linfócitos T Reguladores , Camundongos , Animais , Fatores de Transcrição de Choque Térmico/metabolismo , Colite/patologia , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos C57BL
2.
Clin Transl Med ; 12(1): e703, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073459

RESUMO

BACKGROUND: Chemoresistance to cisplatin (DDP) remains a major challenge in advanced gastric cancer (GC) treatment. Although accumulating evidence suggests an association between dysregulation of long non-coding RNAs (lncRNAs) and chemoresistance, the regulatory functions and complexities of lncRNAs in modulating DDP-based chemotherapy in GC remain under-investigated. This study was designed to explore the critical chemoresistance-related lncRNAs in GC and identify novel therapeutic targets for patients with chemoresistant GC. METHODS: Chemoresistance-related lncRNAs were identified through microarray and verified through a quantitative real-time polymerase chain reaction (qRT-PCR). Proteins bound by lncRNAs were identified through a human proteome array and validated through RNA immunoprecipitation (RIP) and RNA pull-down assays. Co-immunoprecipitation and ubiquitination assays were performed to explore the molecular mechanisms of the Musashi2 (MSI2) post-modification. The effects of LINC00942 (LNC942) and MSI2 on DDP-based chemotherapy were investigated through MTS, apoptosis assays and xenograft tumour formation in vivo. RESULTS: LNC942 was found to be up-regulated in chemoresistant GC cells, and its high expression was positively correlated with the poor prognosis of patients with GC. Functional studies indicated that LNC942 confers chemoresistance to GC cells by impairing apoptosis and inducing stemness. Mechanically, LNC942 up-regulated the MSI2 expression by preventing its interaction with SCFß-TRCP E3 ubiquitin ligase, eventually inhibiting ubiquitination. Then, LNC942 stabilized c-Myc mRNA in an N6-methyladenosine (m6 A)-dependent manner. As a potential m6 A recognition protein, MSI2 stabilized c-Myc mRNA with m6 A modifications. Moreover, inhibition of the LNC942-MSI2-c-Myc axis was found to restore chemosensitivity both in vitro and in vivo. CONCLUSIONS: These results uncover a chemoresistant accelerating function of LNC942 in GC, and disrupting the LNC942-MSI2-c-Myc axis could be a novel therapeutic strategy for GC patients undergoing chemoresistance.


Assuntos
Cisplatino/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Genes myc/efeitos dos fármacos , RNA Longo não Codificante/agonistas , Proteínas de Ligação a RNA/antagonistas & inibidores , Cisplatino/uso terapêutico , Genes myc/fisiologia , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/uso terapêutico , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
3.
Cell Death Dis ; 12(4): 405, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854041

RESUMO

p62/SQSTM1 is frequently up-regulated in many cancers including hepatocellular carcinoma. Highly expressed p62 promotes hepato-carcinogenesis by activating many signaling pathways including Nrf2, mTORC1, and NFκB signaling. However, the underlying mechanism for p62 up-regulation in hepatocellular carcinoma remains largely unclear. Herein, we confirmed that p62 was up-regulated in hepatocellular carcinoma and its higher expression was associated with shorter overall survival in patients. The knockdown of p62 in hepatocellular carcinoma cells decreased cell growth in vitro and in vivo. Intriguingly, p62 protein stability could be reduced by its acetylation at lysine 295, which was regulated by deacetylase Sirt1 and acetyltransferase GCN5. Acetylated p62 increased its association with the E3 ligase Keap1, which facilitated its poly-ubiquitination-dependent proteasomal degradation. Moreover, Sirt1 was up-regulated to deacetylate and stabilize p62 in hepatocellular carcinoma. Additionally, Hepatocyte Sirt1 conditional knockout mice developed much fewer liver tumors after Diethynitrosamine treatment, which could be reversed by the re-introduction of exogenous p62. Taken together, Sirt1 deacetylates p62 at lysine 295 to disturb Keap1-mediated p62 poly-ubiquitination, thus up-regulating p62 expression to promote hepato-carcinogenesis. Therefore, targeting Sirt1 or p62 is a reasonable strategy for the treatment of hepatocellular carcinoma.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sirtuína 1/metabolismo , Animais , Autofagia/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos Endogâmicos BALB C , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/fisiologia
4.
J Enzyme Inhib Med Chem ; 36(1): 593-604, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33557648

RESUMO

Colorectal cancer (CRC) is a common malignant tumour of human digestive tract. The high mortality rate of CRC is closely related to the limitations of existing treatments. Thus, there is an urgent need to search for new anti-CRC agents. In this work, twenty novel coumarin-dithiocarbamate derivatives (IDs) were designed, synthesized and evaluated in vitro. The results suggest that the most active compound ID-11 effectively inhibited the proliferation of CRC cell lines while shown little impact on normal colon epithelial cells. Mechanism studies revealed that ID-11 displayed bromodomain-containing protein 4 inhibitory activity, and induced G2/M phase arrest, apoptosis as well as decreased the expression levels of the key genes such as c-Myc and Bcl-2 in CRC cell lines. Moreover, the ADMET properties prediction results shown that ID-11 possess well metabolic characteristics without obvious toxicities. Our data demonstrated that compound ID-11 may be a promising anti-CRC agent and deserved for further development.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Cumarínicos/farmacologia , Desenho de Fármacos , Tiocarbamatos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiocarbamatos/química , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
5.
Front Cell Dev Biol ; 9: 741736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977006

RESUMO

Hypoxia is an important characteristic of the tumor microenvironment. Tumor cells can survive and propagate under the hypoxia stress by activating a series of adaption response. Herein, we found that lysine-specific demethylase 5B (KDM5B) was upregulated in gastric cancer (GC) under hypoxia conditions. The genetic knockdown or chemical inhibition of KDM5B impaired the growth of GC cell adapted to hypoxia. Interestingly, the upregulation of KDM5B in hypoxia response was associated with the SUMOylation of KDM5B. SUMOylation stabilized KDM5B protein by reducing the competitive modification of ubiquitination. Furthermore, the protein inhibitor of activated STAT 4 (PIAS4) was determined as the SUMO E3 ligase, showing increased interaction with KDM5B under hypoxia conditions. The inhibition of KDM5B caused significant downregulation of hypoxia-inducible factor-1α (HIF-1α) protein and target genes under hypoxia. As a result, co-targeting KDM5B significantly improved the antitumor efficacy of antiangiogenic therapy in vivo. Taken together, PIAS4-mediated SUMOylation stabilized KDM5B protein by disturbing ubiquitination-dependent proteasomal degradation to overcome hypoxia stress. Targeting SUMOylation-dependent KDM5B upregulation might be considered when the antiangiogenic therapy was applied in cancer treatment.

6.
Eur J Med Chem ; 211: 113117, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33360794

RESUMO

Microtubules play a vital role in cell mitosis. Drugs targeting taxol or vinca binding site of tubulin have been proved an effective way to against cancer. However, drug resistance and cancer recurrence are inevitable, there is an urgent need to search for new microtubule-targeting agents (MTAs). In our study, a series of novel 2-aryl-3-sulfonamido-pyridines (HoAns) had been designed, synthesized, and evaluated for their antiproliferative activities in vitro and in vivo. Among them, compound HoAn32 exhibited the most potent activity with IC50 values ranging from 0.170 to 1.193 µM in a panel of cancer cell lines. Mechanism studies indicated that compound HoAn32 bound to the colchicine site of ß-tubulin, resulting in colony formation inhibition, G2/M phase cell cycle arrest, cell apoptosis as well as increased the generation of ROS in both RKO and SW620 cells. In addition, compound HoAn32 showed potent anti-vascular activity in vitro. Furthermore, compound HoAn32 also exhibited outstanding antitumor activity in SW620 xenograft tumor models without observable toxic effects, which was more potent than that of ABT-751. In conclusion, our findings suggest that compound HoAn32 may be a promising microtubule destabilizing agent and deserves for further development in cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Microtúbulos/efeitos dos fármacos , Piridinas/uso terapêutico , Antineoplásicos/farmacologia , Desenho de Fármacos , Humanos , Estrutura Molecular , Piridinas/farmacologia , Relação Estrutura-Atividade
7.
Oncol Lett ; 18(6): 6594-6604, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31807175

RESUMO

The aim of the present study was to use a competing risk model to analyze the prognostic value of mucinous adenocarcinoma (MAC) in patients with colorectal cancer (CRC). An additional aim was to construct nomograms for estimating the 3- and 5-year overall survival (OS) and cancer specific survival (CSS) rates of patients with primary CRC with MAC. The data were extracted from the Surveillance, Epidemiology, and End Results database, and a Multivariate Cox model and competing risk model were applied to assess the OS and CSS. Cox-based and competing risk-based nomograms were constructed and internally validated by discrimination and calibration, using the bootstrapping method with 1,000 times replicates. A total of 13,035 MAC and 61,958 non-mucinous adenocarcinoma (NMAC) CRC patients were enrolled in the present study. Compared with NMAC, MAC patients had a poorer OS and CSS time in the overall population, and in subgroups that comprised metastatic, non-metastatic, male, site of sigmoid colon, rectosigmoid junction and rectal CRC cases (HR>1; P<0.05). The Cox and competing risk-based nomograms showed effective discrimination and calibration. In conclusion, MAC was associated with poor OS and CSS in patients with CRC of the distal colon and rectum. The nomograms of primary CRC patients with MAC may aid the identification of individual patients with a high risk of overall mortality and cancer-associated mortality within 3 or 5 years.

8.
J Cancer ; 10(4): 949-956, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854101

RESUMO

Background: Chromosomally unstable tumors account for 50% of gastric cancer. CHFR plays a role in controlling chromosomal instability and its inactivation will eventually lead to tumorigenesis. In addition to genetic deletion, DNA methylation could silence the expression of many cancer-related genes including CHFR. Its methylation was found to be associated with the initiation and progression of gastric cancer. Methods: We performed a meta-analysis involving methylation analyses of CHFR promoter in gastric cancer. Nineteen studies with 1,249 tumor tissues and 745 normal tissues had been included in current study. Results: We found that CHFR methylation was significantly higher in gastric cancer (studies numbers = 15, cases/controls = 862/745, odds ratio (OR) = 7.46, 95% confidence index (95% CI) = 4.99-11.14). Methylation array data was also obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas network (TCGA). There were 7 out of 13 CHFR methylation probes target to the same CpG island region (hg19, 131973620-131975130) showed the CHFR methylation was higher in gastric cancers than normal controls. Eight probes showed CHFR promoter hypermethylation was associated with longer overall survival of gastric cancer patients (Hazard Ratio < 1). Conclusions: The CHFR promoter hypermethylation was associated with gastric cancer and played a protective role in gastric cancer process. Its methylation could be a potential biomarker for the diagnosis and prognosis of gastric cancer.

9.
Int J Biol Sci ; 14(9): 1122-1132, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29989047

RESUMO

Chemotherapy is the main treatment for human cancers including gastric cancer. However, in response to chemotherapeutic drugs, tumor cells can develop drug resistance by reprogramming intracellular metabolic and epigenetic networks to maintain their intrinsic homeostasis. Previously, we have established cisplatin-resistant gastric cancer cells as a drug resistant model, and elucidated the XRCC1 as the core DNA repair mechanism of drug resistance. This study investigated the regulation of XRCC1 by lysine demethylase 5B (KDM5B) in drug resistance. We found that the methylation level of H3K4 decreased significantly in drug-resistant cells. The chemical inhibitor of H3K4 demethylases, JIB-04, restored the methylation of H3K4 and blocked the co-localization of XRCC1 and γH2AX, eventually improved drug sensitivity. We further found that the expression level of KDM5B increased significantly in drug-resistant cells. Knockdown of KDM5B increased the methylation level of H3K4 and blocked the localization of XRCC1 to the DNA damage site, leads to increased drug sensitivity. In the sensitive cells, overexpression of KDM5B suppressed H3K4 methylation levels, which resulted to resistance to cisplatin. Moreover, we found that the posttranslational modification of KDM5B is responsible for its high expression in drug-resistant cells. Through mass spectrometry screening and co-immunoprecipitation validation, we found that the molecular chaperone HSP90 forms a complex with KDM5B in drug resistance cells. Interestingly, HSP90 inhibitor 17-AAG induced KDM5B degradation in a time-and-dose-dependent manner, indicating that HSP90 protected KDM5B from protein degradation. Targeting inhibition of HSP90 and KDM5B reversed drug resistance both in vitro and in vivo. Taken together, molecular chaperon HSP90 interacted with KDM5B to protect it from ubiquitin-dependent proteasomal degradation. Increased KDM5B demethylated H3K4 and facilitated the recruitment of XRCC1 to repair damaged DNA. Therefore, inhibition of HSP90 or KDM5B represented a novel approach to reverse chemoresistance in human cancers.


Assuntos
Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imunoprecipitação , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
10.
Int J Biol Sci ; 14(9): 1054-1066, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29989092

RESUMO

Chemotherapy is one of the most important approaches for the treatment of various cancers. However, tumor cells often develop resistance to chemotherapeutic drugs. The tumor microenvironment reconstituted by various cytokines secreted from immune cells was recently found to play important roles in affecting therapeutic response of tumor cells. Herein, we reported that tumor cells can secrete autocrine cytokines to confer chemoresistance by inactivating proapoptotic autophagy. Through cytokine screening, we found that drug resistant cancer cells secreted more CCL2 than drug sensitive cells. Such secreted CCL2 could not only maintain chemoresistance in drug-resistant cancer cells but also confer drug resistance to drug-sensitive cancer cells. CCL2 attenuated drug-induced cytotoxicity by activating PI3K-Akt-mTOR signaling to inhibit proapoptotic autophagy and increase SQSTM1 expression. CCL2 expression in primary carcinoma tissues also correlated well with SQSTM1 expression. Either CCL2 knock-down or autophagy induction successfully reversed drug resistance of tumor cells. Moreover, increased expression of SQSTM1 in turn activated CCL2 transcription via NF-κB signal pathway, representing a positive feedback loop to maintain drug resistance. Therefore, our results provided a new insight to understand drug resistance, and indicated the potential value of CCL2 as a biomarker and intervention target for chemotherapy resistance.


Assuntos
Autofagia/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Proteína Sequestossoma-1/metabolismo , Neoplasias Gástricas/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Western Blotting , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Microscopia de Fluorescência , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Sequestossoma-1/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
11.
Am J Transl Res ; 10(4): 1229-1236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736216

RESUMO

Cancers are huge problems that need to be investigated thoroughly. Rab5a plays an important part in the regulation of intracellular membrane trafficking. However, its role in cancer and autophagy has not been fully determined. In this study, we analyzed the correlation between Rab5a expression and patients' prognosis and then explored the effect of Rab5a knockdown on different cell lines using western blotting and fluorescence. Our results showed that up-regulated Rab5a positively correlated with the prognosis of gastric cancer patients. After knocking down Rab5a, mTOR activity was inhibited and autophagy flux increased. We also found that in our cisplatin-resistant cells, knockdown of Rab5a activated autophagy via mTOR pathway and could reverse drug resistance while overexpression of Rab5a in drug sensitive cells increased drug tolerance. In conclusion, our study demonstrates that Rab5a can suppress autophagy through mTOR and promote drug resistance in gastric cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA