Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 17(24): e202200977, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36322683

RESUMO

Herein, a small series of 3-pyrrolin-2-ones was efficiently synthesized through a three-step Ugi cascade sequence. This method features readily available substrates, simple aqueous workup procedures and good yields, dramatically improving generality of reaction. Importantly, the newly product N-benzyl-2-(3-(4-chlorophenyl)-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-1-yl)-2-phen-ylacetamide exhibited potent anti-proliferation in prostate cancer cell line through G1/S cell cycle arrest and targeted in PI3K/AKT/TSC2 signal pathway.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Antineoplásicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose
2.
Int J Mol Med ; 43(5): 2241-2251, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896805

RESUMO

Osteoarthritis (OA) is the most common type of degenerative joint disease and secreted inflammatory molecules serve a pivotal role in it. Peimine has been reported to have anti­inflammatory activity. In order to investigate the potential therapeutic role of Peimine in OA, mouse articular chondrocytes were treated with IL­1ß and different doses of Peimine in vitro. The data revealed that Peimine not only suppressed IL­1ß­induced production of nitric oxide (NO) and prostaglandin E2, but also reduced the protein levels of inducible NO synthase (iNOS) and cyclooxygenase­2 (COX­2). In addition, Peimine inhibited the IL­1ß­induced mRNA expression of matrix metalloproteinase (MMP)­1, MMP­3, MMP­9, MMP­13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)­4 and ADAMTS­5. Furthermore, Peimine inhibited IL­1ß­induced activation of the mitogen­activated protein kinase (MAPK) pathway. The protective effect of Peimine on IL­1ß­treated chondrocytes was attenuated following activation of the MAPK pathway, as demonstrated by the increased expression levels of MMP­3, MMP­13, ADAMTS­5, iNOS and COX­2 compared with the Peimine group. The in vivo data suggested that Peimine limited the development of OA in the mouse model. In general, the data indicate that Peimine suppresses IL­1ß­induced inflammation in mouse chondrocytes by inhibiting the MAPK pathway, suggesting a promising therapeutic role for Peimine in the treatment of OA.


Assuntos
Cevanas/uso terapêutico , Condrócitos/enzimologia , Condrócitos/patologia , Regulação para Baixo , Inflamação/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas ADAMTS/metabolismo , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Sobrevivência Celular/efeitos dos fármacos , Cevanas/farmacologia , Condrócitos/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/biossíntese , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Inflamação/patologia , Interleucina-1beta , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/patologia
3.
Front Pharmacol ; 9: 1046, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271347

RESUMO

Osteoporosis is an enormous health problem caused by the imbalance between bone resorption and bone formation. The current therapeutic strategies for osteoporosis still have some limitations. Boldine, an alkaloid isolated from Peumus boldus, has been shown to have antioxidant and anti-inflammatory effects in vivo. For the first time, we discover that boldine has a protective effect for the estrogen deficiency-induced bone loss in mice. According to the Micro-CT and histomorphometry assays, boldine conducts this protective effect through inhibiting bone resorption without affecting bone formation in vivo. Moreover, we showed that boldine can inhibit receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation via impairing the AKT signaling pathways, while SC79 (an AKT agonist) partially rescue this effect. In conclusion, our results suggest that boldine can prevent estrogen deficiency-induced osteoporosis by inhibiting osteoclastogenesis. Thus, boldine may be served as a novel therapeutic agent for anti-osteoporotic therapy.

4.
Life Sci ; 209: 409-419, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30096387

RESUMO

AIMS: Postmenopausal osteoporosis is a bone metabolism disease that is caused by an imbalance between bone-resorbing osteoclast and bone-forming osteoblast actions. Herein, we describe the role of troxerutin (TRX), a trihydroxyethylated derivative of rutin, in ovariectomy (OVX)-induced osteoporosis and its effects on the regulation of osteoclasts and osteoblasts. MAIN METHODS: In vivo, OVX female mice were intraperitoneally injected with either saline, 50 mg/kg TRX, or 150 mg/kg TRX for 6 weeks and then sacrificed for micro-computed tomography analyses, histological analyses, and biomechanical testing. In vitro, RAW264.7 cell-derived osteoclasts and MC3T3-E1 cell-derived osteoblasts were treated with different concentrations of TRX to examine the effect of TRX on osteoclastogenesis and bone resorption, as well as on osteogenesis and mineralization. KEY FINDINGS: In this study, we demonstrated that TRX prevented cortical and trabecular bone loss in ovariectomized mice by reducing osteoclastogenesis and promoting osteogenesis in vivo. In vitro, TRX inhibited the formation and activity of RAW264.7-derived osteoclasts and the expression of nuclear factor of activated T-cells 1 and cathepsin K. Meanwhile, TRX improved the osteogenesis and mineralization of MC3T3-E1 by enhancing the expression of Runt-related transcription factor 2, Osterix, and collagen type 1 alpha 1. SIGNIFICANCE: Our data demonstrated that TRX could prevent OVX-induced osteoporosis and be used in a novel treatment for postmenopausal osteoporosis.


Assuntos
Anticoagulantes/farmacologia , Reabsorção Óssea/tratamento farmacológico , Hidroxietilrutosídeo/análogos & derivados , Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Substâncias Protetoras/farmacologia , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Humanos , Hidroxietilrutosídeo/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoporose Pós-Menopausa/etiologia , Osteoporose Pós-Menopausa/patologia , Ovariectomia/efeitos adversos , Células RAW 264.7
5.
Biomed Res Int ; 2018: 3936257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977911

RESUMO

FNDC4 acts as an anti-inflammatory factor on macrophages and improves mouse model of induced colitis. Considering osteoclast formation is characterized by the activation of inflammation-related pathways, we thus speculated that FNDC4 may play a pivotal role in this process. RT-qPCR analysis was performed to confirm the expression of osteoclast formation related genes in primary murine bone marrow macrophages (BMMs). RANKL-treated BMMs were cultured with FNDC4 to evaluate the effect of FNDC4 on osteoclast differentiation. TRAP staining and bone resorption pits assay were used to assess osteoclast formation and bone resorption, respectively. Luciferase assay and western blotting analysis were conducted to determine whether FNDC4 inhibited osteoclast formation via NF-κB signaling in RAW 264.7 cells. Furthermore, to identify gene signatures in FNDC4-treated BMMs and to use these to elucidate the underlying molecular mechanisms during osteoclast formation, we adopted a bioinformatics approach by downloading the GSE76172 gene expression profiling dataset from the Gene Expression Omnibus (GEO) database. FNDC4 inhibited RANKL-induced osteoclastogenesis and mature osteoclast resorptive function in a dose-dependent manner. Results of NF-κB luciferase assay suggested that FNDC4 could significantly suppress the RANKL-induced NF-κB transcriptional activity. Based on the protein-protein interaction network, CXCL10 was identified as the differentially expressed gene with the highest connectivity degree (degree = 23); it was drastically downregulated in the presence of FNDC4, but supplementation of CXCL10 (10 ng/mL) partially ameliorated the FNDC4-induced inhibition of osteoclast formation. Taken together, we speculated that FNDC4 could suppress osteoclast formation via NF-κB pathway and downregulation of CXCL10.


Assuntos
Quimiocina CXCL10/metabolismo , Proteínas de Membrana/fisiologia , NF-kappa B/metabolismo , Osteoclastos/fisiologia , Animais , Reabsorção Óssea , Diferenciação Celular , China , Macrófagos , Camundongos , Fatores de Transcrição NFATC , Ligante RANK/fisiologia , Coelhos
6.
Front Pharmacol ; 9: 210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636680

RESUMO

Osteoporosis is a common health problem worldwide caused by an imbalance of bone formation vs. bone resorption. However, current therapeutic approaches aimed at enhancing bone formation or suppressing bone resorption still have some limitations. In this study, we demonstrated for the first time that cepharanthine (CEP, derived from Stephania cepharantha Hayata) exerted a protective effect on estrogen deficiency-induced bone loss. This protective effect was confirmed to be achieved through inhibition of bone resorption in vivo, rather than through enhancement of bone formation in vivo. Furthermore, the in vitro study revealed that CEP attenuated receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast formation, and suppressed bone resorption by impairing the c-Jun N-terminal kinase (JNK) and phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathways. The inhibitory effect of CEP could be partly reversed by treatment with anisomycin (a JNK and p38 agonist) and/or SC79 (an AKT agonist) in vitro. Our results thus indicated that CEP could prevent estrogen deficiency-induced bone loss by inhibiting osteoclastogenesis. Hence, CEP might be a novel therapeutic agent for anti-osteoporosis therapy.

7.
Br J Pharmacol ; 175(6): 859-876, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29130485

RESUMO

BACKGROUND AND PURPOSE: Aseptic prosthesis loosening, caused by wear particles, is one of the most common causes of arthroplasty failure. Extensive and over-activated osteoclast formation and physiological functioning are regarded as the mechanism of prosthesis loosening. Therapeutic modalities based on inhibiting osteoclast formation and bone resorption have been confirmed to be an effective way of preventing aseptic prosthesis loosening. In this study, we have investigated the effects of sophocarpine (SPC, derived from Sophora flavescens) on preventing implant loosening and further explored the underlying mechanisms. EXPERIMENTAL APPROACH: The effects of SPC in inhibiting osteoclastogenesis and bone resorption were evaluated in osteoclast formation, induced in vitro by the receptor activator of NF-κB ligand (RANKL). A rat femoral particle-induced peri-implant osteolysis model was established. Subsequently, micro-CT, histology, mechanical testing and bone turnover were used to assess the effects of SPC in preventing implant loosening. KEY RESULTS: In vitro, we found that SPC suppressed osteoclast formation, bone resorption, F-actin ring formation and osteoclast-associated gene expression by inhibiting NF-κB signalling, specifically by targeting IκB kinases. Our in vivo study showed that SPC prevented particle-induced prosthesis loosening by inhibiting osteoclast formation, resulting in reduced periprosthetic bone loss, diminished pseudomembrane formation, improved bone-implant contact, reduced bone resorption-related turnover and enhanced stability of implants. Inhibition of NF-κB signalling by SPC was confirmed in vivo. CONCLUSION AND IMPLICATIONS: SPC can prevent implant loosening through inhibiting osteoclast formation and bone resorption. Thus, SPC might be a novel therapeutic agent to prevent prosthesis loosening and for osteolytic diseases.


Assuntos
Alcaloides/farmacologia , Reabsorção Óssea/prevenção & controle , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Alcaloides/isolamento & purificação , Animais , Modelos Animais de Doenças , Masculino , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteólise/prevenção & controle , Falha de Prótese , Ligante RANK/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sophora/química
8.
PLoS One ; 12(5): e0178781, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562696

RESUMO

Steroid-associated osteonecrosis (SAON) might induce bone collapse and subsequently lead to joint arthroplasty. Core decompression (CD) is regarded as an effective therapy for early-stage SAON, but the prognosis is unsatisfactory due to incomplete bone repair. Parathyroid hormone[1-34] (PTH[1-34]) has demonstrated positive efficacy in promoting bone formation. We therefore evaluated the effects of PTH on improving the effects of CD in Early-Stage SAON. Distal femoral CD was performed two weeks after osteonecrosis induction or vehicle injection, with ten of the ON-induced rabbits being subjected to six-week PTH[1-34] treatment and the others, including ON-induced and non-induced rabbits, being treated with vehicle. MRI confirmed that intermittent PTH administration improved SAON after CD therapy. Micro-CT showed increased bone formation within the tunnel. Bone repair was enhanced with decreased empty osteocyte lacunae and necrosis foci area, resulting in enhanced peak load and stiffness of the tunnel. Additionally, PTH enlarged the mean diameter of vessels in the marrow and increased the number of vessels within the tunnels, as well as elevated the expression of BMP-2, RUNX2, IGF-1, bFGF and VEGF, together with serum OCN and VEGF levels. Therefore, PTH[1-34] enhances the efficacy of CD on osteogenesis and neovascularization, thus promoting bone and blood vessels repair in the SAON model.


Assuntos
Corticosteroides/efeitos adversos , Descompressão Cirúrgica , Modelos Animais de Doenças , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese , Osteonecrose/tratamento farmacológico , Hormônio Paratireóideo/farmacologia , Animais , Masculino , Osteonecrose/induzido quimicamente , Osteonecrose/fisiopatologia , Coelhos
9.
Biomed Res Int ; 2015: 309739, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25632389

RESUMO

Ultrasound (US) has been used to increase elution of antibiotic from an antibiotic-loaded poly(methyl methacrylate) (PMMA) bone cement (ALBC). We aimed to further investigate whether microbubbles-mediated US (US + MB) facilitate elution of vancomycin (VAN) from cylindrical specimens and enhance the activity of the eluted antibiotic against Staphylococcus aureus (S. aureus) in vitro. The study groups comprised cylindrical bone cement fabricated with VAN (VAN), ALBC using US (VAN + US), and ALBC using MB-mediated US (VAN + US + MB). We also carried out an in vivo study involving the activity of VAN from cylindrical cement implanted in tibiae of New Zealand white rabbits inoculated with S. aureus. We found that (1) in vitro, elution from VAN + US + MB cylinders was significantly higher than from either the VAN or VAN + US specimens; (2) the activity of the eluted VAN from the VAN + US + MB cylinders against planktonic S. aureus was significantly higher than from either the control or VAN or VAN + US specimens; and (3) in the rabbits, the activity of the eluted VAN from the VAN + US + MB cylinders against S. aureus was significantly higher than from either the control or VAN or VAN + US specimens. The present results suggest that VAN-loaded PMMA cement irradiated with MB-mediated US may have a role in controlling prosthetic joint infection.


Assuntos
Cimentos Ósseos/farmacologia , Microbolhas , Polimetil Metacrilato/química , Tíbia/diagnóstico por imagem , Vancomicina/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cimentos Ósseos/uso terapêutico , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Coelhos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Ultrassonografia , Vancomicina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA