Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(34): eadp3654, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178258

RESUMO

Introducing specific strains of probiotics into the gut microbiome is a promising way to modulate the intestinal microbiome to treat various health conditions clinically. However, oral probiotics typically have a temporary or limited impact on the gut microbiome and overall health benefits. Here, we reported a 3D printed cellulose-derived spiral tube-like scaffold that enabled high efficacy of the oral delivery of probiotics. Benefiting from the unique surface pattern, this system can effectively extend the retention time of loaded probiotics in the gut without invading nearby tissues, provide a favorable environment for the survival and long-term colonization of loaded probiotics, and influence the intestinal ecosystem as a dietary fiber after degradation. We demonstrate Roseburia intestinalis-loaded scaffold exerts noticeable impacts on the regulation of the gut microbiome to treat various gut-related diseases, including obesity and inflammatory bowel disease; thus, we provide a universal platform for oral delivery of probiotics.


Assuntos
Celulose , Microbioma Gastrointestinal , Impressão Tridimensional , Probióticos , Probióticos/administração & dosagem , Celulose/química , Administração Oral , Animais , Camundongos , Humanos , Alicerces Teciduais/química
2.
JBMR Plus ; 7(12): e10811, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130773

RESUMO

Bone homeostasis, the equilibrium between bone resorption and formation, is essential for maintaining healthy bone tissue in adult humans. Disruptions of this process can lead to pathological conditions such as osteoporosis. Dual-targeted agents, capable of inhibiting excessive bone resorption and stimulating bone formation, are being explored as a promising strategy for developing new treatments to address osteoporosis. In this study, we investigated the effects of P7C3 on bone remodeling and its potential therapeutic role in osteoporosis treatment in mice. Specifically, P7C3 can remarkably suppress receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophages via the Akt-NF-κB-NFATc1 signaling pathway. Additionally, RNA sequencing (RNAseq) analysis revealed that P7C3 promoted osteoblast differentiation and function through the Wnt/ß-catenin signaling pathway, thereby enhancing bone formation. Furthermore, µCT analysis and histological examination of bone tissues from P7C3-treated mice showed attenuation of both Ti-induced bone erosion and ovariectomy (OVX)-induced bone loss. These findings suggest that P7C3 may have a novel function in bone remodeling and may be a promising therapeutic agent for the treatment of osteoporosis. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA