Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Heliyon ; 10(6): e27927, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515695

RESUMO

This study has investigated the effect of ultrasound (US) as an emerging non-thermal sterilization technique on microbial growth and quality changes in three freshly squeezed pumpkin juices (Cucurbita maxima Duchesne, Cucurbita moschata Duchesne, and Cucurbita pepo L.).The three pumpkin juices were ultrasonicated at different ultrasonic power (0-400 W), time (0-20 min), and temperature (0-30 °C), and the total colony counts of the treated pumpkin juices were less than 5 log CFU/mL, which complied with the food safety and consumption standards. Based on these results, we further investigated the effects of different ultrasonic power (25 kHz, 10 min, 20 °C, 0-400 W) on the physicochemical properties and sensory quality of the three pumpkin juices. The physicochemical properties (color, sugar content, organic acid content, soluble solids, and carotenoids) of treated pumpkin juice were retained or improved to some extent. The antioxidant capacity was also increased by 9.09%, 10.25%, and 16.9% compared to the untreated group. During sonication, the particle size of all samples decreased significantly, the microstructure broke down significantly, and the sensory qualities of pumpkin juice were well preserved after sonication.

2.
Plant Commun ; 5(5): 100830, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38297839

RESUMO

Neonicotinoids (NEOs), a large class of organic compounds, are a type of commonly used pesticide for crop protection. Their uptake and accumulation in plants are prerequisites for their intra- and intercellular movements, transformation, and function. Understanding the molecular mechanisms that underpin NEO uptake by plants is crucial for effective application, which remains elusive. Here, we demonstrate that NEOs enter plant cells primarily through the transmembrane symplastic pathway and accumulate mainly in the cytosol. Two plasma membrane intrinsic proteins discovered in Brassica rapa, BraPIP1;1 and BraPIP2;1, were found to encode aquaporins (AQPs) that are highly permeable to NEOs in different plant species and facilitate NEO subcellular diffusion and accumulation. Their conserved transport function was further demonstrated in Xenopus laevis oocyte and yeast assays. BraPIP1;1 and BraPIP2;1 gene knockouts and interaction assays suggested that their proteins can form functional heterotetramers. Assessment of the potential of mean force indicated a negative correlation between NEO uptake and the energy barrier of BraPIP1;1 channels. This study shows that AQPs transport organic compounds with greater osmolarity than previously thought, providing new insight into the molecular mechanisms of organic compound uptake and facilitating innovations in systemic pesticides.


Assuntos
Aquaporinas , Aquaporinas/metabolismo , Aquaporinas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transporte Biológico , Neonicotinoides/metabolismo , Animais , Praguicidas/metabolismo , Xenopus laevis/metabolismo , Brassica rapa/metabolismo , Brassica rapa/genética , Oócitos/metabolismo , Inseticidas/metabolismo
3.
J Colloid Interface Sci ; 661: 598-605, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308898

RESUMO

Potassium-ion batteries (PIBs) as an emerging battery technology have garnered significant research interest. However, the development of high-performance PIBs critically hinges on reliable anode materials with comprehensive electrochemical performance and low cost. Herein, low-cost N-doped biomass-derived carbon-sulfur hybrids (NBCSHs) were prepared through a simple co-carbonization of the mixture of a biomass precursor (coffee grounds) and sulfur powder. The sulfur in NBCSHs predominantly exists in the form of single-atomic sulfur bonded with carbon atoms (CSC), functioning as main active redox sites to achieve high reversible capacity. Electrochemical evaluations reveal that the NBCSH 1-3 with moderate sulfur content shows significantly improved potassium storage performance, such as a high reversible capacity of 484.7 mAh g-1 and rate performance of 119.4 mAh g-1 at 5 A g-1, 4.5 and 14.7 times higher than that of S-free biomass-derived carbon, respectively. Furthermore, NBCSH 1-3 exhibits stable cyclability (no obvious capacity fading even after 1000 cycles at 0.5 A g-1) and excellent electrochemical kinetics (low overpotentials and apparent diffusion coefficients). The improved performance of NBCSHs is primarily attributed to pseudocapacitance-dominated behavior with fast charge transfer capability. Density functional theory calculations also reveal that co-doping with S, N favors for achieving a stronger potassium adsorbing capability. Assemble K-ion capacitors with NBCS 1-3 as anodes demonstrate stable cyclability and commendable rate performance. Our research envisions the potential of NBCSHs as efficient and sustainable materials for advanced potassium-ion energy storage systems.

4.
Int J Biol Sci ; 19(15): 5004-5019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781523

RESUMO

Background: Dietary fat intake is associated with an increased risk of colitis associated cancer (CAC). A high-fat diet (HFD) leads to systemic low-grade inflammation. The colon is believed to be the first organ suffering from inflammation caused by the infiltration of pro-inflammatory macrophages, and promotes CAC progression. We explored the role of HFD in driving CAC by altering gut microbial butyrate metabolism. Methods: Changes in the gut microbiota caused by HFD were investigated via HFD treatment or fecal microbiota transplantation (FMT). The underlying mechanisms were further explored by analyzing the role of gut microbiota, microbial butyrate metabolism, and NLRP3 inflammasome in colon tissues in a CAC mouse model. Results: HFD accelerated CAC progression in mice, and it could be reversed by broad-spectrum antibiotics (ABX). 16S-rRNA sequencing revealed that HFD inhibited the abundance of butyrate-producing bacteria in the gut. The level of short-chain fatty acids (SCFAs), especially butyrate, in the gut of mice treated with HFD was significantly reduced. In addition, treatment with exogenous butyrate reversed the M1 polarization of proinflammatory macrophages, aggravation of intestinal inflammation, and accelerated tumor growth induced by HFD; the NLRP3/Caspase-1 pathway activated by HFD in the colon was also significantly inhibited. In vitro, macrophages were treated with lipopolysaccharide combined with butyrate to detect the M1 polarization level and NLRP3/Caspase-1 pathway expression, and the results were consistent with those of the in vivo experiments. Conclusion: HFD drives colitis-associated tumorigenesis by inducing gut microbial dysbiosis and inhibiting butyrate metabolism to skew macrophage polarization. Exogenous butyrate is a feasible new treatment strategy for CAC, and has good prospect for clinical application.


Assuntos
Colite , Microbioma Gastrointestinal , Camundongos , Animais , Butiratos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamação , Transformação Celular Neoplásica , Carcinogênese , Caspases
5.
Mol Biotechnol ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572222

RESUMO

Cerebral ischemia/reperfusion injury (CIRI) involves various pathogenic mechanisms, including cytotoxicity, apoptosis, inflammation, and pyroptosis. Stromal interactive molecule 2 (STIM2) is implicated in cerebral ischemia. Consequently, this study investigates the biological functions of STIM2 and its related mechanisms in CIRI progression. Middle cerebral artery occlusion/reperfusion (MCAO/R) mouse models and oxygen-glucose deprivation/reoxygenation (OGD/R) cellular models were established. STIM2 level was upregulated in experimental CIRI models, as shown by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunofluorescence staining. Brain infarction and edema were attenuated by STIM2 knockdown, as 2,3,5-triphenyltetrazolium chloride (TTC) staining and brain water content evaluation revealed. STIM2 knockdown relieved neuronal apoptosis, microglia activation, inflammation and pyroptosis in MCAO/R mice, as detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, enzyme-linked immunosorbent assay (ELISA) and western blotting. Results of flow cytometry, ELISA, western blotting and cell counting kit-8 (CCK-8) assays also showed that STIM2 knockdown inhibited inflammation, apoptosis and pyroptosis in OGD/R-treated BV2 cells. Moreover, STIM2 knockdown inhibited apoptosis and pyroptosis in PC12 cells incubated with conditioned medium collected from OGD/R-exposed BV2 cells. Mechanistically, lncRNA Malat1 (metastasis associated lung adenocarcinoma transcript 1) positively regulated STIM2 expression by sponging miR-30d-5p. Their binding relationship was confirmed by luciferase reporter assays. Finally, lncRNA Malat1 elevation or miR-30d-5p knockdown abolished the sh-STIM2-induced inhibition in cell damage. In conclusion, STIM2 knockdown in microglia alleviates CIRI by inhibiting microglial activation, inflammation, apoptosis, and pyroptosis.

6.
Transl Oncol ; 36: 101741, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37523897

RESUMO

BACKGROUND: Many studies have demonstrated the crucial roles of 5-methylcytosine (m5C) RNA methylation in cancer pathogenesis. METHODS: Two datasets, including TCGA-KIRP and ICGC, and related clinical information were downloaded, where the expression of 13 m5C regulators was examined. We applied LASSO regression to construct a multi-m5C-regulator-based signature in the TCGA cohort, which was further validated using the ICGC cohort. Univariate and multivariate Cox regressions were applied to evaluate the independent prognostic value of our model. The differences in biological functions and immune characterizations between high and low-risk groups divided based on the risk scores were also investigated via multiple approaches, such as enrichment analyses, mutation mining, and immune scoring. Finally, the sensitivities of commonly used targeted drugs were tested, and the connectivity MAP (cMAP) was utilized to screen potentially effective molecules for patients in the high-risk group. Experimental validation was done following qPCR tests in Caki-2 and HK-2 cell lines. RESULTS: 3 m5C regulators, including ALYREF, DNMT3B and YBX1, were involved in our model. Survival analysis revealed a worse prognosis for patients in the high-risk group. Cox regression results indicated our model's superior predictive performance compared to single-factor prognostic evaluation. Functional enrichment analyses indicated a higher mutation frequency and poorer tumor microenvironment of patients in the high-risk group. qPCR-based results revealed that ALYREF, DNMT3B, and YBX1 were significantly up-regulated in Caki-2 cell lines compared with HK-2 cell lines. Molecules like BRD-K72451865, Levosimendan, and BRD-K03515135 were advised by cMAP for patients in the high-risk group. CONCLUSION: Our study presented a novel predictive model for KIRP prognosis. Furthermore, the results of our analysis provide new insights for investigating m5C events in KIRP pathogenesis.

7.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675124

RESUMO

The halophytic wild relatives within Triticeae might provide valuable sources of salt tolerance for wheat breeding, and attempts to use these sources of tolerance have been made for improving salt tolerance in wheat by distant hybridization. A novel wheat substitution line of K17-1078-3 was developed using common wheat varieties of Chuannong16 (CN16), Zhengmai9023 (ZM9023), and partial amphidiploid Trititrigia8801 (8801) as parents, and identified as the 3E(3D) substitution line. The substitution line was compared with their parents for salt tolerance in hydroponic culture to assess their growth. The results showed that less Na+ accumulation and lower Na+/K+ ratio in both shoots and roots were achieved in K17-1078-3 under salinity compared to its wheat parents. The root growth and development of K17-1078-3 was less responsive to salinity. When exposed to high salt treatment, K17-1078-3 had a higher photosynthesis rate, more efficient water use efficiency, and greater antioxidant capacity and stronger osmotic adjustment ability than its wheat parents. In conclusion, a variety of physiological responses and root system adaptations were involved in enhancing salt tolerance in K17-1078-3, which indicated that chromosome 3E possessed the salt tolerance locus. It is possible to increase substantially the salt tolerance of wheat by the introduction of chromosome 3E into wheat genetic background.


Assuntos
Plântula , Triticum , Plântula/genética , Tetraploidia , Melhoramento Vegetal , Poaceae/genética , Tolerância ao Sal/genética , Cromossomos de Plantas/genética
8.
J Hazard Mater ; 443(Pt A): 130124, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308928

RESUMO

Plasmonic nanoparticles that self-assemble into highly ordered superlattice nanostructures hold substantial promise for facilitating ultra-trace surface-enhanced Raman scattering (SERS) detection. Herein, we propose a boiling-point evaporation method to synthesize ordered monocrystal-like superlattice Au nanostructures (OML-Au NTs) with a polyhedral morphology. Combined with thermal nanoimprint technology, OML-Au NTs were directly transferred to impact-resistant polystyrene (IPS) flexible SERS substrates, the obtained flexible substrates (donated as OML-Au NTs/IPS) detection limit for R6G molecules as low as 10-13 M. These results were confirmed by simulating the electromagnetic field distribution of ordered/unordered two-dimensional single-layer and three-dimensional aggregated gold nanostructures. The OML-Au NTs/IPS substrates were successfully used to detect and quantify three commonly-used agricultural pesticides, achieving detection limits as low as 10-11 M and 10-12 M, and in situ real-time detection limit reached 0.24 pg/cm2 for thiram on apple peels, which was 3 orders of magnitude lower than the current detection limit. In addition, the Raman intensity from multiple locations showed a relative standard deviation lower than 7 %, exhibiting the reliability necessary for practical applications. As a result, this research demonstrates a highly reproducible method to enable the development of plasmonic nanomaterials with flexible superstructures.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Ouro/química , Análise Espectral Raman/métodos , Nanoestruturas/química
9.
Sci Total Environ ; 858(Pt 2): 159826, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374729

RESUMO

Food safety problems caused by pesticide residues have always been a concern for many people. In this study, we investigated the uptake, translocation and subcellular distribution of neonicotinoid insecticides, triazole fungicides, and sulfonylurea herbicides in rice plants (Oryza sativa L.). The time-dependent uptake kinetics of the three categories of pesticides with different molecular structures fit a first-order one-compartment kinetic model. The neonicotinoids (log Kow -0.66-0.8) were mainly concentrated in the leaves, and the triazoles (log Kow 3.72-4.4) were mainly concentrated in the roots. Neonicotinoid pesticides in the roots were preferentially transported across the membrane through the symplastic pathway; triazole pesticides except for triadimefon and myclobutanil preferentially passed through the symplastic pathway; and sulfonylurea pesticides (log Kow 0.034-2.89) were first transported upward through the apoplastic pathway. In the roots, neonicotinoids, triazoles, and sulfonylurea herbicides were mainly concentrated in the soluble fractions, cell wall and apoplast fractions, respectively. In addition, there was a high positive correlation between the subcellular distribution of pesticides in the roots, stems and leaves. Molecular weight and log Kow jointly affected the enrichment of triazole pesticides in the roots, stems and leaves and the transfer from stems to leaves, while water solubility and log Kow commonly affected neonicotinoids. There was a correlation between pesticide absorption and the molecular structures of pesticides. To develop pesticides with strong uptake and transport capabilities, it is necessary to consider that the electronegativity of some atoms is stronger, the sum of the topological indices of heteroatoms can be large, and the van der Waals volume increases accordingly.


Assuntos
Herbicidas , Oryza , Praguicidas , Humanos , Praguicidas/análise , Oryza/metabolismo , Cinética , Neonicotinoides , Herbicidas/análise , Triazóis/metabolismo
10.
Am J Transl Res ; 14(11): 8286-8291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505331

RESUMO

Foreign body ingestion is a rare but important clinical event. We herein describe a patient who was misdiagnosed with acute pancreatitis after inadvertent ingestion of a toothpick while drunk. The toothpick penetrated the stomach and migrated to the pancreas, resulting in abdominal pain for nearly 1 month. We present the clinical manifestations, diagnosis, and treatment of the patient and summarize the characteristics of patients with foreign body ingestion by a systematic literature review. This report illustrates an unusual of misdiagnosed acute pancreatitis caused by foreign body. This case reminds us to make full use of different diagnostic tools and multidisciplinary collaboration to leverage their complementary strengths and improve the diagnostic accuracy.

11.
Nanomaterials (Basel) ; 12(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364702

RESUMO

Metal-organic frameworks (MOFs) have attracted extensive attention as precursors for the preparation of carbon-based materials due to their highly controllable composition, structure, and pore size distribution. However, there are few reports of MOFs using p-phenylenediamine (pPD) as the organic ligand. In this work, we report the preparation of a bimetallic MOF (CoCu-pPD) with pPD as the organic ligand, and its derived hollow carbon spheres (BMHCS). CoCu-pPD exhibits a hollow spherical structure assembled by nanosheets. BMHCS inherits the unique hollow spherical structure of CoCu-pPD, which also shows a large specific surface area and heteroatom doping. When using as the anode of sodium-ion batteries (SIBs), BMHCS exhibits excellent cycling stability (the capacity of 306 mA h g-1 after 300 cycles at a current density of 1 A g-1 and the capacity retention rate of 90%) and rate capability (the sodium storage capacity of 240 mA h g-1 at 5 A g-1). This work not only provides a strategy for the preparation of pPD-based bimetallic-MOFs, but also enhances the thermal stability of the pPD-based MOFs. In addition, this work also offers a new case for the morphology control of assembled carbon materials and has achieved excellent performance in the field of SIBs.

12.
Front Bioeng Biotechnol ; 10: 900274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966027

RESUMO

Psoriasis is a common chronic immune-inflammatory disease. Challenges exist in the present treatment of psoriasis, such as difficulties in transdermal drug administration and severe side effects. We hope to achieve a better therapeutic outcome for psoriasis treatment. By using modified soluble microneedles (MNs) loaded with daphnetin, the psoriasis symptoms of mice, the abnormal proliferation of keratinocytes, and the secretion of inflammatory factors were significantly reduced. In vitro, daphnetin is proven to inhibit the NF-κB signaling pathway and to inhibit the proliferation of HaCaT cells and the release of inflammatory factors, especially CCL20. This research showed that the modified microneedle loaded with daphnetin optimized transdermal drug delivery and relieved the symptoms of psoriasis more effectively. The novel route of Daph administration provides a future research direction for the treatment of psoriasis.

13.
J Microbiol Biotechnol ; 32(7): 825-834, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35791076

RESUMO

Inflammatory bowel disease (IBD) is a global disease that is in increasing incidence. The gut, which contains the largest amount of lymphoid tissue in the human body, as well as a wide range of nervous system components, is integral in ensuring intestinal homeostasis and function. By interacting with gut microbiota, immune cells, and the enteric nervous system, the intestinal barrier, which is a solid barrier, protects the intestinal tract from the external environment, thereby maintaining homeostasis throughout the body. Destruction of the intestinal barrier is referred to as developing a "leaky gut," which causes a series of changes relating to the occurrence of IBD. Changes in the interactions between the intestinal barrier and gut microbiota are particularly crucial in the development of IBD. Exploring the leaky gut and its interaction with the gut microbiota, immune cells, and the neuroimmune system may help further explain the pathogenesis of IBD and provide potential therapeutic methods for future use.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbioma Gastrointestinal/fisiologia , Homeostase , Humanos
14.
Analyst ; 147(10): 2272-2279, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35510624

RESUMO

Cervical cancer is a common cancer in women. HPV16 E6 oncoprotein is a reliable biomarker for cervical cancer. Although there are other methods for detecting E6 oncoprotein, the electrochemical method has more advantages, such as low cost, convenience and speed. In this study, a novel dual-signal electrochemical immunosensor for quick and sensitive detection of E6 oncoprotein based on a high efficiency catalyst and signal label was developed. Herein, to achieve quick detection, palladium-boron-phosphorus dendritic ternary nanospheres (PdBP NSs) not only acted as a catalyst to catalyze H2O2, but also as a support material to capture antibodies. Moreover, to realize sensitive detection, nanocomposites of mesoporous silica nanoparticles loaded with methylene blue and coated with chitosan (MBSi-Chi) were synthesized as a signal label, which can produce electrochemical signal. Under optimal conditions, the label-free immunosensor exhibited a linear range of 100 fg mL-1 to 4 ng mL-1 with a detection limit of 72.8 fg mL-1 (S/N = 3), and the sandwich-type immunosensor presented a linear range of 50 fg mL-1 to 4 ng mL-1 with a detection limit of 34.1 fg mL-1 (S/N = 3). The as-prepared dual-signal immunosensor had desirable specificity, stability and repeatability, implying its potential applications in clinical laboratory.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Nanocompostos , Nanosferas , Neoplasias do Colo do Útero , Anticorpos Imobilizados , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Feminino , Ouro , Humanos , Peróxido de Hidrogênio , Imunoensaio/métodos , Limite de Detecção , Proteínas Oncogênicas
15.
Ultrason Sonochem ; 84: 105974, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35288328

RESUMO

Freshly squeezed pumpkin juice (Cucurbita moschata D.) was sonicated at various power levels at a constant frequency of 25 kHz and a treatment time of 10 min. Samples were stored in the dark for 0, 4, 8, and 12 days at 4 °C and were subsequently analyzed. The combined effects of power level and storage period on color parameters, carotenoid content, particle size distribution, cloud value, rheological characteristics, and microstructure were investigated. The results showed ultrasonic-treated samples had little effect on carotenoid content, cloud value, particle size distribution, and polydispersity during storage compared to those of the untreated samples. The L⁎, a⁎, b⁎, and C* values decreased significantly during 8-12 days of storage, resulting in a significant increase in ΔE, especially 400 W/10 min-treated samples. Meanwhile, the enzyme activity and rheological properties increased significantly on storage days 8-12. However, the microstructure of all samples did not change significantly during storage. Based on these results, during the storage period, the physical and chemical properties of 400 W/10 min-ultrasonic treated pumpkin juice were retained more than those in the untreated pumpkin juice. Therefore, ultrasonic treatment has broad application prospects in preserving bioactive substances and physicochemical properties and improving the storage life of fresh pumpkin juice.


Assuntos
Cucurbita , Bebidas/análise , Carotenoides/análise , Cucurbita/química , Alimentos , Ultrassom
16.
Sci Rep ; 12(1): 4538, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35297400

RESUMO

Regardless of technical advancements, delayed bleeding is still a common adverse event after gastric endoscopic submucosal dissection (ESD), often occurring in the early postoperative phase. This study aimed to evaluate the efficacy of a newly designed polyethylene oxide (PEO) adhesive for preventing delayed gastric bleeding. Patients who underwent gastric ESD between December 2017 and December 2020 at three Chinese institutions were retrospectively reviewed. Patients receiving PEO application on gastric post-ESD ulcers were included in the PEO group, and patients without this procedure were included in the control group. To minimize potential bias, propensity score matching was performed, and sex, age, lesion size, lesion morphology, ulceration, localization, procedure time, frequency of major intraoperative bleeding, resected specimen size, lesion histopathology, submucosal invasion and the taking of antithrombotic drugs were included as matching factors. The incidence of delayed bleeding and time to bleeding were compared between both groups. After propensity score matching, 270 patients (135 per group) were included in the analysis. The delayed bleeding rate in the PEO group was significantly lower than that in the control group (1.5%, 2/135 vs. 8.9%, 12/135, P = 0.006). The median time (range) to bleeding was 4.5 (4-5) days in the PEO group and 2 (1-15) days in the control group, with no significant difference (P = 0. 198). PEO demonstrated a significant effect in reducing the rate of delayed bleeding. Further study is warranted to confirm the efficacy of PEO for bleeding that occurs in the early phase after gastric ESD.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Gástricas , Úlcera Gástrica , Adesivos , Ressecção Endoscópica de Mucosa/efeitos adversos , Mucosa Gástrica/patologia , Mucosa Gástrica/cirurgia , Hemorragia Gastrointestinal/complicações , Hemorragia Gastrointestinal/prevenção & controle , Humanos , Polietilenoglicóis , Hemorragia Pós-Operatória/epidemiologia , Hemorragia Pós-Operatória/etiologia , Hemorragia Pós-Operatória/prevenção & controle , Pontuação de Propensão , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Úlcera Gástrica/patologia
17.
J Mol Histol ; 53(2): 357-367, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35067807

RESUMO

Ischemic stroke is a nervous system disease with high rates of disability and mortality. MicroRNAs have been reported to modulate cerebral ischemia. The current study aimed to study the role of miR-361-3p in cerebral ischemia-reperfusion (I/R) injury. Experimental results revealed that miR-361-3p level was downregulated in a middle cerebral artery occlusion-induced ischemic stroke mouse model and in oxygen-glucose deprivation/reoxygenation-stimulated SH-SY5Y cells. After overexpressing miR-361-3p, the percentage of brain infarct volume and neurobehavioral scores in mice were significantly reduced, and the neuronal apoptosis was inhibited. Moreover, miR-361-3p overexpression could limit the production of reactive oxygen species (ROS). Furthermore, we investigated the underlying molecular mechanisms of miR-361-3p and identified that miR-361-3p combined with NACC1 3'UTR to negatively modulate its expression. In addition, NACC1 interacts with the PINK1/Parkin pathway in neurons. NACC1 overexpression could rescue the impacts of miR-361-3p mimics on cell apoptosis, ROS production and the PINK1/Parkin pathway. In conclusion, miR-361-3p could improve ischemia brain injury by targeting NACC1 through the PINK1/Parkin pathway. Therefore, miR-361-3p may serve as a potential therapeutic target for the brain injury after I/R.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Animais , Apoptose/genética , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Glucose , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Quinases , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/uso terapêutico
18.
Am J Transl Res ; 13(10): 10994-11003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786038

RESUMO

Colorectal cancer (CRC) is now the third most common malignancy and the second leading cause of cancer death globally. Bile acid has bidirectional regulatory effects on CRC and influences its progression by interacting with gut microbiota. In this review, we provide evidence for bidirectional regulation of bile acid on CRC at multi-level and discuss the communication of gene, immune, metabolism and diet in the context of CRC with bile acid-gut microbiota interaction. The study on bidirectional regulation of bile acid is helpful to provide a more comprehensive and in-depth understanding of CRC pathogenesis and expect to be a new option for the treatment of CRC.

19.
Am J Transl Res ; 13(10): 11597-11607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786085

RESUMO

In the past two decades, several methylated DNA targets, including gene promoters and other intronic markers have been explored in tumors and benign lesions. Therefore, it can be expected that a panel of stool-based biomarkers will become a screening method for colorectal cancer (CRC) and adenoma with better sensitivity and specificity, aiming to decrease the incidence and mortality of CRC. In this study, the methylation of secreted frizzled-related protein 1 (SFRP1), hyperplastic polyposis protein 1 (HPP1), α-internexin (INA), Wnt inhibitory factor 1 (WIF1), tissue factor pathway inhibitor 2 (TFPI2), ikaros family zinc finger protein 1 (IKZF1), and spastic paraplegia 20 (SPG20) were detected in stool samples from patients with CRC, adenoma, polyps, and healthy controls, respectively, and these biomarkers were used to establish a logistic regression model for classification. Receiver operating characteristic (ROC) curves were drawn to assess the importance of each biomarker. Subsequently, a biomarker or combination of biomarkers was analyzed for early screening of high-risk neoplasm. The data showed that when a single biomarker was used for CRC screening, the sensitivity ranged from 63.9% to 76.8%, the area under the curve (AUC) ranged from 0.821 to 0.875, and the accuracy ranged from 77.0% to 84.5%. Finally, the methylation of SFRP1, HPP1, TFPI2, and IKZF1 was selected using a backward stepwise method in the multivariate logistic analysis according to the Akaike Information Criterion. These findings indicate that stool DNA biomarkers have good diagnostic power in discriminating high-risk level of neoplasm from healthy population.

20.
Cancer Lett ; 523: 170-181, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34627951

RESUMO

Patients with persistent ulcerative colitis (UC) are at a higher risk of developing colitis-associated cancer (CAC). Previous studies have reported that intestinal microbiota disturbance plays an important role in the process of CAC development in patients with UC, indicating that targeted intervention of intestinal microbiota and its metabolites may be a potential therapeutic strategy. Gut microbiota in the process of colorectal cancer development in UC patients was analyzed using the gutMEGA database and verified in fecal samples. The abundance of Bacteroides fragilis reduced significantly in the process of colitis associated cancer development. Broad-spectrum antibiotics (BSAB) intervene with the intestinal microbiota of mice and accelerate the process of colon cancer development. However, gavage transplantation with B. fragilis can effectively reverse the effects of BSAB. In the intestinal tract, B. fragilis promotes the secretion of short-chain fatty acids (SCFAs). Subsequently, SCFAs, especially butyrate, negatively regulate the inflammatory signaling pathway mediated by NLRP3 to inhibit the activation of macrophages and the secretion of proinflammatory mediators such as IL-18 and IL-1ß, reducing the level of intestinal inflammation and restricting CAC development. In conclusion, colonization with B. fragilis has been shown to be effective in ameliorating intestinal epithelial damage caused by chronic inflammation and preventing the development of colonic tumors. Thus, it can be a therapeutic intervention strategy with good clinical application prospects.


Assuntos
Bacteroides fragilis/fisiologia , Colite Ulcerativa/complicações , Neoplasias Associadas a Colite/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Animais , Butiratos/farmacologia , Disbiose , Ácidos Graxos Voláteis/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA